30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fine Analysis of Genetic Diversity of the tpr Gene Family among Treponemal Species, Subspecies and Strains

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The pathogenic non-cultivable treponemes include three subspecies of Treponema pallidum (pallidum, pertenue, endemicum), T. carateum, T. paraluiscuniculi, and the unclassified Fribourg-Blanc treponeme (Simian isolate). These treponemes are morphologically indistinguishable and antigenically and genetically highly similar, yet cross-immunity is variable or non-existent. Although all of these organisms cause chronic, multistage skin and systemic disease, they have historically been classified by mode of transmission, clinical presentations and host ranges. Whole genome studies underscore the high degree of sequence identity among species, subspecies and strains, pinpointing a limited number of genomic regions for variation. Many of these “hot spots” include members of the tpr gene family, composed of 12 paralogs encoding candidate virulence factors. We hypothesize that the distinct clinical presentations, host specificity, and variable cross-immunity might reside on virulence factors such as the tpr genes.

          Methodology/Principal Findings

          Sequence analysis of 11 tpr loci (excluding tprK) from 12 strains demonstrated an impressive heterogeneity, including SNPs, indels, chimeric genes, truncated gene products and large deletions. Comparative analyses of sequences and 3D models of predicted proteins in Subfamily I highlight the striking co-localization of discrete variable regions with predicted surface-exposed loops. A hallmark of Subfamily II is the presence of chimeric genes in the tprG and J loci. Diversity in Subfamily III is limited to tprA and tprL.

          Conclusions/Significance

          An impressive sequence variability was found in tpr sequences among the Treponema isolates examined in this study, with most of the variation being consistent within subspecies or species, or between syphilis vs. non-syphilis strains. Variability was seen in the pallidum subspecies, which can be divided into 5 genogroups. These findings support a genetic basis for the classification of these organisms into their respective subspecies and species. Future functional studies will determine whether the identified genetic differences relate to cross-immunity, clinical differences, or host ranges.

          Author Summary

          Pathogenic treponemes include three subspecies of Treponema pallidum ( pallidum, pertenue, endemicum), T. carateum, T. paraluiscuniculi, and the unclassified Fribourg-Blanc treponeme. Although they share morphology and have very similar antigenic profiles, they have traditionally been distinguished by mode of transmission, host specificity and the clinical manifestations that they cause. The molecular basis for these disease characteristics is not known. Comparative genomics has revealed that sequences differences among the species and subspecies are found in very localized regions of the chromosome. Many of these regions of sequence variation are found in the tpr genes, which encode a family of twelve candidate virulence factors, many of which are predicted to be outer membrane proteins. Most of the tpr-specific sequence changes are consistent within subspecies or species, supporting the historical classification of these organisms into separate subspecies and species. Functional studies are needed to determine whether any of the tpr gene differences are related to differences in host range, immunity, or clinical manifestations.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure.

          Catechol-O-methyltransferase (COMT) is a key regulator of pain perception, cognitive function, and affective mood. Three common haplotypes of the human COMT gene, divergent in two synonymous and one nonsynonymous position, code for differences in COMT enzymatic activity and are associated with pain sensitivity. Haplotypes divergent in synonymous changes exhibited the largest difference in COMT enzymatic activity, due to a reduced amount of translated protein. The major COMT haplotypes varied with respect to messenger RNA local stem-loop structures, such that the most stable structure was associated with the lowest protein levels and enzymatic activity. Site-directed mutagenesis that eliminated the stable structure restored the amount of translated protein. These data highlight the functional significance of synonymous variations and suggest the importance of haplotypes over single-nucleotide polymorphisms for analysis of genetic variations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            3D-Jury: a simple approach to improve protein structure predictions.

            Consensus structure prediction methods (meta-predictors) have higher accuracy than individual structure prediction algorithms (their components). The goal for the development of the 3D-Jury system is to create a simple but powerful procedure for generating meta-predictions using variable sets of models obtained from diverse sources. The resulting protocol should help to improve the quality of structural annotations of novel proteins. The 3D-Jury system generates meta-predictions from sets of models created using variable methods. It is not necessary to know prior characteristics of the methods. The system is able to utilize immediately new components (additional prediction providers). The accuracy of the system is comparable with other well-tuned prediction servers. The algorithm resembles methods of selecting models generated using ab initio folding simulations. It is simple and offers a portable solution to improve the accuracy of other protein structure prediction protocols. The 3D-Jury system is available via the Structure Prediction Meta Server (http://BioInfo.PL/Meta/) to the academic community. 3D-Jury is coupled to the continuous online server evaluation program, LiveBench (http://BioInfo.PL/LiveBench/)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complete genome sequence of Treponema pallidum, the syphilis spirochete.

              The complete genome sequence of Treponema pallidum was determined and shown to be 1,138,006 base pairs containing 1041 predicted coding sequences (open reading frames). Systems for DNA replication, transcription, translation, and repair are intact, but catabolic and biosynthetic activities are minimized. The number of identifiable transporters is small, and no phosphoenolpyruvate:phosphotransferase carbohydrate transporters were found. Potential virulence factors include a family of 12 potential membrane proteins and several putative hemolysins. Comparison of the T. pallidum genome sequence with that of another pathogenic spirochete, Borrelia burgdorferi, the agent of Lyme disease, identified unique and common genes and substantiates the considerable diversity observed among pathogenic spirochetes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                May 2013
                16 May 2013
                : 7
                : 5
                : e2222
                Affiliations
                [1 ]Department of Medicine, University of Washington, Seattle, Washington, United States of America
                [2 ]Pathobiology Graduate Program, University of Washington, Seattle, Washington, United States of America
                [3 ]Department of Global Health, University of Washington, Seattle, Washington, United States of America
                Institut Pasteur, France
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ACL SAL. Performed the experiments: LG CG BJM TBR. Analyzed the data: ACL SAL LG. Wrote the paper: ACL SAL LG.

                Article
                PNTD-D-12-01134
                10.1371/journal.pntd.0002222
                3656149
                23696912
                aab5c7b8-7e59-446a-8908-c7c6616668e9
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 September 2012
                : 5 April 2013
                Page count
                Pages: 14
                Funding
                This work was supported by N.I.H. ( www.nih.gov/) grants AI063940 and AI42143 (to SAL, ACL and LG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Molecular Genetics
                Gene Identification and Analysis
                Microbiology
                Emerging Infectious Diseases
                Host-Pathogen Interaction
                Microbial Pathogens
                Pathogenesis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article