11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1- 13C]butyrate and [1- 13C]pyruvate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) 13C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1- 13C]pyruvate and [1- 13C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [ 13C]bicarbonate (−48%), [1- 13C]acetylcarnitine (+113%), and [5- 13C]glutamate (−63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1- 13C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1- 13C]acetoacetate and [1- 13C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1- 13C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (−82%). Combining HP 13C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.

          Trimetazidine is a clinically effective antianginal agent that has no negative inotropic or vasodilator properties. Although it is thought to have direct cytoprotective actions on the myocardium, the mechanism(s) by which this occurs is as yet undefined. In this study, we determined what effects trimetazidine has on both fatty acid and glucose metabolism in isolated working rat hearts and on the activities of various enzymes involved in fatty acid oxidation. Hearts were perfused with Krebs-Henseleit solution containing 100 microU/mL insulin, 3% albumin, 5 mmol/L glucose, and fatty acids of different chain lengths. Both glucose and fatty acids were appropriately radiolabeled with either (3)H or (14)C for measurement of glycolysis, glucose oxidation, and fatty acid oxidation. Trimetazidine had no effect on myocardial oxygen consumption or cardiac work under any aerobic perfusion condition used. In hearts perfused with 5 mmol/L glucose and 0.4 mmol/L palmitate, trimetazidine decreased the rate of palmitate oxidation from 488+/-24 to 408+/-15 nmol x g dry weight(-1) x minute(-1) (P<0.05), whereas it increased rates of glucose oxidation from 1889+/-119 to 2378+/-166 nmol x g dry weight(-1) x minute(-1) (P<0.05). In hearts subjected to low-flow ischemia, trimetazidine resulted in a 210% increase in glucose oxidation rates. In both aerobic and ischemic hearts, glycolytic rates were unaltered by trimetazidine. The effects of trimetazidine on glucose oxidation were accompanied by a 37% increase in the active form of pyruvate dehydrogenase, the rate-limiting enzyme for glucose oxidation. No effect of trimetazidine was observed on glycolysis, glucose oxidation, fatty acid oxidation, or active pyruvate dehydrogenase when palmitate was substituted with 0.8 mmol/L octanoate or 1.6 mmol/L butyrate, suggesting that trimetazidine directly inhibits long-chain fatty acid oxidation. This reduction in fatty acid oxidation was accompanied by a significant decrease in the activity of the long-chain isoform of the last enzyme involved in fatty acid beta-oxidation, 3-ketoacyl coenzyme A (CoA) thiolase activity (IC(50) of 75 nmol/L). In contrast, concentrations of trimetazidine in excess of 10 and 100 micromol/L were needed to inhibit the medium- and short-chain forms of 3-ketoacyl CoA thiolase, respectively. Previous studies have shown that inhibition of fatty acid oxidation and stimulation of glucose oxidation can protect the ischemic heart. Therefore, our data suggest that the antianginal effects of trimetazidine may occur because of an inhibition of long-chain 3-ketoacyl CoA thiolase activity, which results in a reduction in fatty acid oxidation and a stimulation of glucose oxidation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Field mapping without reference scan using asymmetric echo-planar techniques.

            Improvements in Bo mapping and shimming were achieved by measuring the static field information in multiple subsequent echoes generated by an asymmetric echo-planar readout gradient train. With careful compensation, eddy current effects were shown to affect the adjustment of the shim coils minimally. In addition to reducing the time required for field mapping by two-fold, the sensitivity was simultaneously optimized irrespective of the prevalent T2* present, thereby minimizing the error of the static field measurement to below 0.1 Hz. With adiabatic low flip-angle excitation, the time required for field mapping was below 1 second.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance.

              The advent of hyperpolarized (13)C magnetic resonance (MR) has provided new potential for the real-time visualization of in vivo metabolic processes. The aim of this work was to use hyperpolarized [1-(13)C]pyruvate as a metabolic tracer to assess noninvasively the flux through the mitochondrial enzyme complex pyruvate dehydrogenase (PDH) in the rat heart, by measuring the production of bicarbonate (H(13)CO(3)(-)), a byproduct of the PDH-catalyzed conversion of [1-(13)C]pyruvate to acetyl-CoA. By noninvasively observing a 74% decrease in H(13)CO(3)(-) production in fasted rats compared with fed controls, we have demonstrated that hyperpolarized (13)C MR is sensitive to physiological perturbations in PDH flux. Further, we evaluated the ability of the hyperpolarized (13)C MR technique to monitor disease progression by examining PDH flux before and 5 days after streptozotocin induction of type 1 diabetes. We detected decreased H(13)CO(3)(-) production with the onset of diabetes that correlated with disease severity. These observations were supported by in vitro investigations of PDH activity as reported in the literature and provided evidence that flux through the PDH enzyme complex can be monitored noninvasively, in vivo, by using hyperpolarized (13)C MR.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                06 May 2016
                2016
                : 6
                : 25573
                Affiliations
                [1 ]Department of Radiology, University Hospital Lausanne (CHUV) and University of Lausanne (UNIL) , Lausanne, Switzerland
                [2 ]Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne , Lausanne, Switzerland
                [3 ]Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, FL 32610, USA
                [4 ]Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne , Lausanne, Switzerland
                Author notes
                Article
                srep25573
                10.1038/srep25573
                4858671
                27150735
                aab92529-e5ce-4262-86e7-6b23e5b72a1e
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 14 December 2015
                : 20 April 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article