16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Viral infection in both plant and invertebrate hosts requires a virus-encoded function to block the RNA silencing antiviral defense. Here, we report the identification and characterization of three distinct suppressors of RNA silencing encoded by the approximately 20-kb plus-strand RNA genome of citrus tristeza virus (CTV). When introduced by genetic crosses into plants carrying a silencing transgene, both p20 and p23, but not coat protein (CP), restored expression of the transgene. Although none of the CTV proteins prevented DNA methylation of the transgene, export of the silencing signal (capable of mediating intercellular silencing spread) was detected only from the F(1) plants expressing p23 and not from the CP- or p20-expressing F(1) plants, demonstrating suppression of intercellular silencing by CP and p20 but not by p23. Thus, intracellular and intercellular silencing are each targeted by a CTV protein, whereas the third, p20, inhibits silencing at both levels. Notably, CP suppresses intercellular silencing without interfering with intracellular silencing. The novel property of CP suggests a mechanism distinct to p20 and all of the other viral suppressors known to interfere with intercellular silencing and that this class of viral suppressors may not be consistently identified by Agrobacterium coinfiltration because it also induces RNA silencing against the infiltrated suppressor transgene. Our analyses reveal a sophisticated viral counter-defense strategy that targets the silencing antiviral pathway at multiple steps and may be essential for protecting CTV with such a large RNA genome from antiviral silencing in the perennial tree host.

          Related collections

          Author and article information

          Journal
          Proc Natl Acad Sci U S A
          Proceedings of the National Academy of Sciences of the United States of America
          Proceedings of the National Academy of Sciences
          0027-8424
          0027-8424
          Nov 02 2004
          : 101
          : 44
          Affiliations
          [1 ] Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Plant Pathology, University of California, Riverside, CA 92521, USA.
          Article
          0404940101
          10.1073/pnas.0404940101
          524217
          15505219
          aac45d7d-7f0d-4498-8cc5-9aaaed458633
          History

          Comments

          Comment on this article