13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Influences of Soybean Agglutinin and Functional Oligosaccharides on the Intestinal Tract of Monogastric Animals

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soybean agglutinin (SBA) is a non-fiber carbohydrate-related protein and the main anti-nutritional factor that exists in soybean or soybean products. SBA possesses a specific binding affinity for N-glyphthalide- d-galactosamine or galactose and has a covalently linked oligosaccharide chain. SBA mediates negative effects on animal intestinal health by influencing the intestinal structure, barrier function, mucosal immune system, and the balance of the intestinal flora. Functional oligosaccharides are non-digestible dietary oligosaccharides that are commonly applied as prebiotics since the biological effects of the functional oligosaccharides are to increase the host health by improving mucosal structure and function, protecting the integrity of the intestinal structure, modulating immunity, and balancing the gastrointestinal microbiota. The purpose of this review is to describe the structure and anti-nutritional functions of SBA, summarize the influence of SBA and functional oligosaccharides on the intestinal tract of monogastric animals, and emphasize the relationship between SBA and oligosaccharides. This review provides perspectives on applying functional oligosaccharides for alleviating the anti-nutritional effects of SBA on the intestinal tract.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Regional specialization within the intestinal immune system.

          The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the intestine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers.

            Two hundred forty male Avian Farms broiler chicks, 1 d of age, were randomly allocated to four treatments, each of which had five pens of 12 chicks per pen. The chicks were used to investigate the effects of fructooligosaccharide (FOS) on digestive enzyme activities and intestinal microflora and morphology. The chicks received the same basal diet based on corn-soybean meal, and FOS was added to the basal diet at 0, 2.0, 4.0, and 8.0 g/kg diet at the expense of corn. Addition of 4.0 g/kg FOS to the basal diet significantly increased average daily gain of broilers. The feed-to-gain ratios were significantly decreased for the birds fed diets with 2.0 and 4.0 g/kg FOS versus the control. Addition of 4.0 g/kg FOS enhanced the growth of Bifidobacterium and Lactobacillus, but inhibited Escherichia coli in the small intestinal and cecal digesta. Supplementation of 2.0 or 4.0 g/kg FOS to chicks significantly improved the activities of amylase compared to the control (12.80 or 14.75 vs. 8.42 Somogyi units). A significant increase in the activities of total protease was observed in 4.0 g/kg FOS-treated birds versus controls (83.91 vs. 65.97 units). Morphology data for the duodenum, jejunum, and ileum showed no significant differences for villus height, crypt depth, or microvillus height at the duodenum. By contrast, addition of 4.0 g/kg FOS significantly increased ileal villus height, jejunal and ileal microvillus height, and villus-height-to-crypt-depth ratios at the jejunum and ileum and decreased crypt depth at the jejunum and ileum. However, addition of 8.0 g/kg FOS had no significant effect on growth performance, digestive enzyme activities, intestinal microflora, or morphology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks.

              The ability of different enteric pathogens and coliforms to trigger agglutination of yeast cells (Saccharomyces cerevisiae, NCYC 1026) and a yeast cell wall preparation (MOS) was examined. Five of seven strains of Escherichia coli and 7 of 10 strains of Salmonella typhimurium and Salmonella enteritidis agglutinated MOS and Sac. cerevisiae cells. Strains of Salmonella choleraesuis, Salmonella pullorum, and Campylobacter did not lead to agglutination. Two strains that agglutinated MOS (S. typhimurium 29E and Salmonella dublin) and one nonagglutinating strain (S. typhimurium 27A) were selected as challenge organisms for in vivo studies in chicks under controlled conditions. In a series of three trials in which 3-d-old chicks were orally challenged with 10(4) cfu of S. typhimurium 29E, birds receiving 4,000 ppm of dietary MOS had reduced cecal S. typhimurium 29E concentrations (5.40 vs 4.01 log cfu/ g; P < 0.05) at Day 10. In a second series of three trials with S. dublin as challenge organism, the number of birds that tested salmonella positive in the ceca at Day 10 was less when MOS was part of the diet (90 vs 56%; P < 0.05). To test the effect of MOS on concentrations of bacteria that do not express Type 1 fimbriae, a challenge trial was conducted with S. typhimurium 27A. However, strain 27A did not colonize the birds sufficiently to evaluate whether MOS affected its cecal concentration. Mannanoligosaccharide did not significantly reduce the concentrations of cecal coliforms (P < 0.10) although they were numerically lower. It had no effect on cecal concentrations of lactobacilli, enterococci, anaerobic bacteria, lactate, volatile fatty acid, or cecal pH.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                12 February 2018
                February 2018
                : 19
                : 2
                : 554
                Affiliations
                [1 ]Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; panli0628@ 123456126.com (L.P.); zhaoyuan4CL52@ 123456126.com (Y.Z.); baonan203@ 123456163.com (N.B.)
                [2 ]Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
                Author notes
                Article
                ijms-19-00554
                10.3390/ijms19020554
                5855776
                29439523
                aac550c0-3cf2-4b4a-b93c-3123ac042fcf
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 December 2017
                : 31 January 2018
                Categories
                Review

                Molecular biology
                soybean agglutinin,oligosaccharides,intestinal health,intestinal structure,microflora

                Comments

                Comment on this article