0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A nanostructure made of a bacterial noncoding RNA.

      Journal of the American Chemical Society
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural RNAs, unlike many proteins, have never been reported to form extended nanostructures, despite their wide variety of cellular functions. This is all the more striking, as synthetic DNA and RNA forming large nanostructures have long been successfully designed. Here, we show that DsrA, a 87-nt noncoding RNA of Escherichia coli, self-assembles into a hierarchy of nanostructures through antisense interactions of three contiguous self-complementary regions. Yet, the extended nanostructures, observed using atomic force microscopy (AFM) and fluorescence microscopy, are easily disrupted into >100 nm long helical bundles of DsrA filaments, including hundreds of DsrA monomers, and are surprisingly resistant to heat and urea denaturation. Molecular modeling demonstrates that this structural switch of DsrA nanostructures into filament bundles results from the relaxation of stored torsional constraints and suggests possible implications for DsrA regulatory function.

          Related collections

          Author and article information

          Journal
          19821568
          10.1021/ja906076e

          Comments

          Comment on this article

          scite_