44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Blocker State Dependence and Trapping in Hyperpolarization-Activated Cation Channels : Evidence for an Intracellular Activation Gate

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperpolarization-activated cation currents (I h) are key determinants of repetitive electrical activity in heart and nerve cells. The bradycardic agent ZD7288 is a selective blocker of these currents. We studied the mechanism for ZD7288 blockade of cloned I h channels in excised inside-out patches. ZD7288 blockade of the mammalian mHCN1 channel appeared to require opening of the channel, but strong hyperpolarization disfavored blockade. The steepness of this voltage-dependent effect (an apparent valence of ∼4) makes it unlikely to arise solely from a direct effect of voltage on blocker binding. Instead, it probably indicates a differential affinity of the blocker for different channel conformations. Similar properties were seen for ZD7288 blockade of the sea urchin homologue of I h channels (SPIH), but some of the blockade was irreversible. To explore the molecular basis for the difference in reversibility, we constructed chimeric channels from mHCN1 and SPIH and localized the structural determinant for the reversibility to three residues in the S6 region likely to line the pore. Using a triple point mutant in S6, we also revealed the trapping of ZD7288 by the closing of the channel. Overall, the observations led us to hypothesize that the residues responsible for ZD7288 block of I h channels are located in the pore lining, and are guarded by an intracellular activation gate of the channel.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Sleep and arousal: thalamocortical mechanisms.

          Thalamocortical activity exhibits two distinct states: (a) synchronized rhythmic activity in the form of delta, spindle, and other slow waves during EEG-synchronized sleep and (b) tonic activity during waking and rapid-eye-movement sleep. Spindle waves are generated largely through a cyclical interaction between thalamocortical and thalamic reticular neurons involving both the intrinsic membrane properties of these cells and their anatomical interconnections. Specific alterations in the interactions between these cells can result in the generation of paroxysmal events resembling absence seizures in children. The release of several different neurotransmitters from the brain stem, hypothalamus, basal forebrain, and cerebral cortex results in a depolarization of thalamocortical and thalamic reticular neurons and an enhanced excitability in many cortical pyramidal cells, thereby suppressing the generation of sleep rhythms and promoting a state that is conducive to sensory processing and cognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A family of hyperpolarization-activated mammalian cation channels.

            Pacemaker activity of spontaneously active neurons and heart cells is controlled by a depolarizing, mixed Na+/K+ current, named Ih (or I(f) in the sinoatrial node of the heart). This current is activated on hyperpolarization of the plasma membrane. In addition to depolarizing pacemaker cells, Ih is involved in determining the resting membrane potential of neurons and provides a mechanism to limit hyperpolarizing currents in these cells. Hormones and neurotransmitters that induce a rise in cyclic AMP levels increase Ih by a mechanism that is independent of protein phosphorylation, and which involves direct binding of the cyclic nucleotide to the channel that mediates Ih. Here we report the molecular cloning and functional expression of the gene encoding a hyperpolarization-activated cation channel (HAC1) that is present in brain and heart. This channel exhibits the general properties of Ih channels. We have also identified full-length sequences of two related channels, HAC2 and HAC3, that are specifically expressed in the brain, indicating the existence of a family of hyperpolarization-activated cation channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gated access to the pore of a voltage-dependent K+ channel.

              Voltage-activated K+ channels are integral membrane proteins that open or close a K(+)-selective pore in response to changes in transmembrane voltage. Although the S4 region of these channels has been implicated as the voltage sensor, little is known about how opening and closing of the pore is accomplished. We explored the gating process by introducing cysteines at various positions thought to lie in or near the pore of the Shaker K+ channel, and by testing their ability to be chemically modified. We found a series of positions in the S6 transmembrane region that react rapidly with water-soluble thiol reagents in the open state but not the closed state. An open-channel blocker can protect several of these cysteines, showing that they lie in the ion-conducting pore. At two of these sites, Cd2+ ions bind to the cysteines without affecting the energetics of gating; at a third site, Cd2+ binding holds the channel open. The results suggest that these channels open and close by the movement of an intracellular gate, distinct from the selectivity filter, that regulates access to the pore.
                Bookmark

                Author and article information

                Journal
                J Gen Physiol
                The Journal of General Physiology
                The Rockefeller University Press
                0022-1295
                1540-7748
                1 February 2001
                : 117
                : 2
                : 91-102
                Affiliations
                [a ]Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115
                Article
                8336
                10.1085/jgp.117.2.91
                2217248
                11158163
                aadad056-2886-4843-a214-34b4b16ff470
                © 2001 The Rockefeller University Press
                History
                : 2 November 2000
                : 5 December 2000
                : 5 December 2000
                Categories
                Original Article

                Anatomy & Physiology
                zd7288,mhcn1,pore,spih
                Anatomy & Physiology
                zd7288, mhcn1, pore, spih

                Comments

                Comment on this article