157
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Data, information, knowledge and principle: back to metabolism in KEGG

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the hierarchy of data, information and knowledge, computational methods play a major role in the initial processing of data to extract information, but they alone become less effective to compile knowledge from information. The Kyoto Encyclopedia of Genes and Genomes (KEGG) resource ( http://www.kegg.jp/ or http://www.genome.jp/kegg/) has been developed as a reference knowledge base to assist this latter process. In particular, the KEGG pathway maps are widely used for biological interpretation of genome sequences and other high-throughput data. The link from genomes to pathways is made through the KEGG Orthology system, a collection of manually defined ortholog groups identified by K numbers. To better automate this interpretation process the KEGG modules defined by Boolean expressions of K numbers have been expanded and improved. Once genes in a genome are annotated with K numbers, the KEGG modules can be computationally evaluated revealing metabolic capacities and other phenotypic features. The reaction modules, which represent chemical units of reactions, have been used to analyze design principles of metabolic networks and also to improve the definition of K numbers and associated annotations. For translational bioinformatics, the KEGG MEDICUS resource has been developed by integrating drug labels (package inserts) used in society.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ExplorEnz: the primary source of the IUBMB enzyme list

          ExplorEnz is the MySQL database that is used for the curation and dissemination of the International Union of Biochemistry and Molecular Biology (IUBMB) Enzyme Nomenclature. A simple web-based query interface is provided, along with an advanced search engine for more complex Boolean queries. The WWW front-end is accessible at http://www.enzyme-database.org, from where downloads of the database as SQL and XML are also available. An associated form-based curatorial application has been developed to facilitate the curation of enzyme data as well as the internal and public review processes that occur before an enzyme entry is made official. Suggestions for new enzyme entries, or modifications to existing ones, can be made using the forms provided at http://www.enzyme-database.org/forms.php.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modular Architecture of Metabolic Pathways Revealed by Conserved Sequences of Reactions

            The metabolic network is both a network of chemical reactions and a network of enzymes that catalyze reactions. Toward better understanding of this duality in the evolution of the metabolic network, we developed a method to extract conserved sequences of reactions called reaction modules from the analysis of chemical compound structure transformation patterns in all known metabolic pathways stored in the KEGG PATHWAY database. The extracted reaction modules are repeatedly used as if they are building blocks of the metabolic network and contain chemical logic of organic reactions. Furthermore, the reaction modules often correspond to traditional pathway modules defined as sets of enzymes in the KEGG MODULE database and sometimes to operon-like gene clusters in prokaryotic genomes. We identified well-conserved, possibly ancient, reaction modules involving 2-oxocarboxylic acids. The chain extension module that appears as the tricarboxylic acid (TCA) reaction sequence in the TCA cycle is now shown to be used in other pathways together with different types of modification modules. We also identified reaction modules and their connection patterns for aromatic ring cleavages in microbial biodegradation pathways, which are most characteristic in terms of both distinct reaction sequences and distinct gene clusters. The modular architecture of biodegradation modules will have a potential for predicting degradation pathways of xenobiotic compounds. The collection of these and many other reaction modules is made available as part of the KEGG database.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Network-based analysis and characterization of adverse drug-drug interactions.

              Co-administration of multiple drugs may cause adverse effects, which are usually known but sometimes unknown. Package inserts of prescription drugs are supposed to contain contraindications and warnings on adverse interactions, but such information is not necessarily complete. Therefore, it is becoming more important to provide health professionals with a comprehensive view on drug-drug interactions among all the drugs in use as well as a computational method to identify potential interactions, which may also be of practical value in society. Here we extracted 1,306,565 known drug-drug interactions from all the package inserts of prescription drugs marketed in Japan. They were reduced to 45,180 interactions involving 1352 drugs (active ingredients) identified by the D numbers in the KEGG DRUG database, of which 14,441 interactions involving 735 drugs were linked to the same drug-metabolizing enzymes and/or overlapping drug targets. The interactions with overlapping targets were further classified into three types: acting on the same target, acting on different but similar targets in the same protein family, and acting on different targets belonging to the same pathway. For the rest of the extracted interaction data, we attempted to characterize interaction patterns in terms of the drug groups defined by the Anatomical Therapeutic Chemical (ATC) classification system, where the high-resolution network at the D number level is progressively reduced to a low-resolution global network. Based on this study we have developed a drug-drug interaction retrieval system in the KEGG DRUG database, which may be used for both searching against known drug-drug interactions and predicting potential interactions.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2014
                7 November 2013
                7 November 2013
                : 42
                : D1 , Database issue
                : D199-D205
                Affiliations
                1Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan and 2Life Science Solutions Department, Fujitsu Kyushu Systems Ltd., Sawara-ku, Fukuoka 814-8589, Japan
                Author notes
                *To whom correspondence should be addressed. Tel: +81 774 38 4521; Fax: +81 774 38 3269; Email: kanehisa@ 123456kuicr.kyoto-u.ac.jp
                Article
                gkt1076
                10.1093/nar/gkt1076
                3965122
                24214961
                ab027073-1e81-4105-863f-d1d36d00e191
                © The Author(s) 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 15 September 2013
                : 13 October 2013
                : 14 October 2013
                Page count
                Pages: 7
                Categories
                II. Protein sequence and structure, motifs and domains
                Custom metadata
                1 January 2014

                Genetics
                Genetics

                Comments

                Comment on this article