8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Diurnal Timing Dependent Alterations in Gut Microbial Composition Are Synchronously Linked to Salt-Sensitive Hypertension and Renal Damage

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alterations of diurnal rhythms of blood pressure (BP) and reshaping of gut microbiota are both independently associated with hypertension. However, the relationships between biorhythms of BP and gut microbial composition are unknown. We hypothesized that diurnal timing-associated alterations of microbial compositions are synchronous with diurnal rhythmicity, dip in BP, and renal function. To test this hypothesis, Dahl salt-sensitive (S) rats on low- and high-salt diets were examined for time of day effects on gut microbiota, BP, and indicators of renal damage. Major shifts in night and day patterns of specific groups of microbiota were observed between the dark (active) and light (rest) phases, which correlated with diurnal rhythmicity of BP. The diurnal abundance of Firmicutes, Bacteroidetes, and Actinobacteria were independently associated with BP. Discrete bacterial taxa were observed to correlate independently or interactively with one or more of the following 3 factors: (1) BP rhythm, (2) dietary salt, and (3) dip in BP. Phylogenetic Investigation of Communities revealed diurnal timing effects on microbial pathways, characterized by upregulated biosynthetic processes during the active phase of host, and upregulated degradation pathways of metabolites in the resting phase. Additional metagenomics functional pathways with rhythm variations were noted for aromatic amino acid metabolism and taurine metabolism. These diurnal timing dependent changes in microbiota, their functional pathways, and BP dip were associated with concerted effects of the levels of renal lipocalin 2 and kidney injury molecule-1 expression. These data provide evidence for a firm and concerted diurnal timing effects of BP, renal damage, and select microbial communities.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis

          ABSTRACT Background: Conditions of excess androgen in women, such as polycystic ovary syndrome (PCOS), often exhibit intergenerational transmission. One way in which the risk for PCOS may be increased in daughters of affected women is through exposure to elevated androgens in utero. Hyperandrogenemic conditions have serious health consequences, including increased risk for hypertension and cardiovascular disease. Recently, gut dysbiosis has been found to induce hypertension in rats, such that blood pressure can be normalized through fecal microbial transplant. Therefore, we hypothesized that the hypertension seen in PCOS has early origins in gut dysbiosis caused by in utero exposure to excess androgen. We investigated this hypothesis with a model of prenatal androgen (PNA) exposure and maternal hyperandrogenemia by single-injection of testosterone cypionate or sesame oil vehicle (VEH) to pregnant dams in late gestation. We then completed a gut microbiota and cardiometabolic profile of the adult female offspring. Results: The metabolic assessment revealed that adult PNA rats had increased body weight and increased mRNA expression of adipokines: adipocyte binding protein 2, adiponectin, and leptin in inguinal white adipose tissue. Radiotelemetry analysis revealed hypertension with decreased heart rate in PNA animals. The fecal microbiota profile of PNA animals contained higher relative abundance of bacteria associated with steroid hormone synthesis, Nocardiaceae and Clostridiaceae, and lower abundance of Akkermansia, Bacteroides, Lactobacillus, Clostridium. The PNA animals also had an increased relative abundance of bacteria associated with biosynthesis and elongation of unsaturated short chain fatty acids (SCFAs). Conclusions: We found that prenatal exposure to excess androgen negatively impacted cardiovascular function by increasing systolic and diastolic blood pressure and decreasing heart rate. Prenatal androgen was also associated with gut microbial dysbiosis and altered abundance of bacteria involved in metabolite production of short chain fatty acids. These results suggest that early-life exposure to hyperandrogenemia in daughters of women with PCOS may lead to long-term alterations in gut microbiota and cardiometabolic function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbiotal-Host Interactions and Hypertension.

            Hypertension, or elevated blood pressure (BP), has been extensively researched over decades and clearly demonstrated to be caused due to a combination of host genetic and environmental factors. Although much research remains to be conducted to pin-point the precise genetic elements on the host genome that control BP, new lines of evidence are emerging to indicate that, besides the host genome, the genomes of all indigenous commensal micro-organisms, collectively referred to as the microbial metagenome or microbiome, are important, but largely understudied, determinants of BP. Unlike the rigid host genome, the microbiome or the "second genome" can be altered by diet or microbiotal transplantation in the host. This possibility is attractive from the perspective of exploiting the microbiotal composition for clinical management of inherited hypertension. Thus, focusing on the limited current literature supporting a role for the microbiome in BP regulation, this review highlights the need to further explore the role of the co-existence of host and the microbiota as an organized biological unit called the "holobiont" in the context of BP regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host-Microbiota Interaction and Intestinal Epithelial Functions under Circadian Control: Implications in Colitis and Metabolic Disorders.

              Commensal microbes are involved in intestinal homeostasis, and the dysregulation of host-microbe interactions may lead to the development of local and systemic disorders. Recent evidence indicated that microbiota dysbiosis plays a key role in the pathogenesis of inflammatory bowel disease and metabolism-related disorders. The circadian clock system originally identified in the brain was later found in the gastrointestinal tract. Although the light-controlled central clock in the brain is responsible for the synchronization of peripheral clocks, the timing of meal consumption serves as another cue for the rhythmic setting of gastrointestinal digestion, absorption, and epithelial renewal and barrier functions. Multiple lines of evidence have indicated that in addition to daylight and food intake, microbiota (as an environmental factor) are involved in the circadian control of gut homeostasis. Recent studies demonstrated that microbial metabolites and innate signaling orchestrate the host circadian rhythm, revealing unforeseen molecular mechanisms underlying the regulatory role of microbiota in intestinal physiology and systemic metabolism. In this review, we discuss the host-microbe interplay that contributes to the regulation of intestinal clock signals and physiological functions and explore how microbiota dysbiosis may cause misalignment of circadian systems leading to the development of chronic inflammatory and metabolic diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Hypertension
                Hypertension
                Ovid Technologies (Wolters Kluwer Health)
                0194-911X
                1524-4563
                July 2020
                July 2020
                : 76
                : 1
                : 59-72
                Affiliations
                [1 ]From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.).
                Article
                10.1161/HYPERTENSIONAHA.120.14830
                32450738
                ab0342fd-9310-4909-9d28-555f2912332d
                © 2020
                History

                Comments

                Comment on this article