+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.

          Related collections

          Most cited references 223

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.

          Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
            • Record: found
            • Abstract: found
            • Article: not found

            Neuronal replacement from endogenous precursors in the adult brain after stroke.

            In the adult brain, new neurons are continuously generated in the subventricular zone and dentate gyrus, but it is unknown whether these neurons can replace those lost following damage or disease. Here we show that stroke, caused by transient middle cerebral artery occlusion in adult rats, leads to a marked increase of cell proliferation in the subventricular zone. Stroke-generated new neurons, as well as neuroblasts probably already formed before the insult, migrate into the severely damaged area of the striatum, where they express markers of developing and mature, striatal medium-sized spiny neurons. Thus, stroke induces differentiation of new neurons into the phenotype of most of the neurons destroyed by the ischemic lesion. Here we show that the adult brain has the capacity for self-repair after insults causing extensive neuronal death. If the new neurons are functional and their formation can be stimulated, a novel therapeutic strategy might be developed for stroke in humans.
              • Record: found
              • Abstract: not found
              • Article: not found

              Interneurons of the hippocampus.


                Author and article information

                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                30 November 2012
                18 January 2013
                : 6
                Neural Regeneration Laboratory, Department of Anatomy and Neuroscience, Centre for Neuroscience Research, The University of Melbourne Parkville, VIC, Australia
                Author notes

                Edited by: Clare Parish, Florey Neuroscience Institute, Australia

                Reviewed by: Mohamed Jaber, University of Poitiers, France; Michael Chopp, Henry Ford Health System/Henry Ford Hospital, USA

                *Correspondence: Ann M. Turnley, Department of Anatomy and Neuroscience, Melbourne Brain Centre, Royal Parade at Genetics Lane, The University of Melbourne, Parkville, VIC 3010, Australia. e-mail: turnley@ 123456unimelb.edu.au
                Copyright © 2013 Christie and Turnley.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 270, Pages: 18, Words: 18385
                Review Article


                Comment on this article