24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiac autonomic neuropathy (CAN) is a serious complication of diabetes mellitus (DM) that is strongly associated with approximately five-fold increased risk of cardiovascular mortality. CAN manifests in a spectrum of things, ranging from resting tachycardia and fixed heart rate (HR) to development of “silent” myocardial infarction. Clinical correlates or risk markers for CAN are age, DM duration, glycemic control, hypertension, and dyslipidemia (DLP), development of other microvascular complications. Established risk factors for CAN are poor glycemic control in type 1 DM and a combination of hypertension, DLP, obesity, and unsatisfactory glycemic control in type 2 DM. Symptomatic manifestations of CAN include sinus tachycardia, exercise intolerance, orthostatic hypotension (OH), abnormal blood pressure (BP) regulation, dizziness, presyncope and syncope, intraoperative cardiovascular instability, asymptomatic myocardial ischemia and infarction. Methods of CAN assessment in clinical practice include assessment of symptoms and signs, cardiovascular reflex tests based on HR and BP, short-term electrocardiography (ECG), QT interval prolongation, HR variability (24 h, classic 24 h Holter ECG), ambulatory BP monitoring, HR turbulence, baroreflex sensitivity, muscle sympathetic nerve activity, catecholamine assessment and cardiovascular sympathetic tests, heart sympathetic imaging. Although it is common complication, the significance of CAN has not been fully appreciated and there are no unified treatment algorithms for today. Treatment is based on early diagnosis, life style changes, optimization of glycemic control and management of cardiovascular risk factors. Pathogenetic treatment of CAN includes: Balanced diet and physical activity; optimization of glycemic control; treatment of DLP; antioxidants, first of all α-lipoic acid (ALA), aldose reductase inhibitors, acetyl-L-carnitine; vitamins, first of all fat-soluble vitamin B1; correction of vascular endothelial dysfunction; prevention and treatment of thrombosis; in severe cases-treatment of OH. The promising methods include prescription of prostacyclin analogues, thromboxane A2 blockers and drugs that contribute into strengthening and/or normalization of Na +, K +-ATPase (phosphodiesterase inhibitor), ALA, dihomo-γ-linolenic acid (DGLA), ω-3 polyunsaturated fatty acids (ω-3 PUFAs), and the simultaneous prescription of ALA, ω-3 PUFAs and DGLA, but the future investigations are needed. Development of OH is associated with severe or advanced CAN and prescription of nonpharmacological and pharmacological, in the foreground midodrine and fludrocortisone acetate, treatment methods are necessary.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040.

          To produce current estimates of the national, regional and global impact of diabetes for 2015 and 2040.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.

            Cardiovascular morbidity is a major burden in patients with type 2 diabetes. In the Steno-2 Study, we compared the effect of a targeted, intensified, multifactorial intervention with that of conventional treatment on modifiable risk factors for cardiovascular disease in patients with type 2 diabetes and microalbuminuria. The primary end point of this open, parallel trial was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, revascularization, and amputation. Eighty patients were randomly assigned to receive conventional treatment in accordance with national guidelines and 80 to receive intensive treatment, with a stepwise implementation of behavior modification and pharmacologic therapy that targeted hyperglycemia, hypertension, dyslipidemia, and microalbuminuria, along with secondary prevention of cardiovascular disease with aspirin. The mean age of the patients was 55.1 years, and the mean follow-up was 7.8 years. The decline in glycosylated hemoglobin values, systolic and diastolic blood pressure, serum cholesterol and triglyceride levels measured after an overnight fast, and urinary albumin excretion rate were all significantly greater in the intensive-therapy group than in the conventional-therapy group. Patients receiving intensive therapy also had a significantly lower risk of cardiovascular disease (hazard ratio, 0.47; 95 percent confidence interval, 0.24 to 0.73), nephropathy (hazard ratio, 0.39; 95 percent confidence interval, 0.17 to 0.87), retinopathy (hazard ratio, 0.42; 95 percent confidence interval, 0.21 to 0.86), and autonomic neuropathy (hazard ratio, 0.37; 95 percent confidence interval, 0.18 to 0.79). A target-driven, long-term, intensified intervention aimed at multiple risk factors in patients with type 2 diabetes and microalbuminuria reduces the risk of cardiovascular and microvascular events by about 50 percent. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial.

              Individuals with diabetes are at increased risk of cardiovascular morbidity and mortality, although typically their plasma concentrations of LDL cholesterol are similar to those in the general population. Previous evidence about the effects of lowering cholesterol in people with diabetes has been limited, and most diabetic patients do not currently receive cholesterol-lowering therapy despite their increased risk. 5963 UK adults (aged 40-80 years) known to have diabetes, and an additional 14573 with occlusive arterial disease (but no diagnosed diabetes), were randomly allocated to receive 40 mg simvastatin daily or matching placebo. Prespecified analyses in these prior disease subcategories, and other relevant subcategories, were of first major coronary event (ie, non-fatal myocardial infarction or coronary death) and of first major vascular event (ie, major coronary event, stroke or revascularisation). Analyses were also conducted of subsequent vascular events during the scheduled treatment period. Comparisons are of all simvastatin-allocated versus all placebo-allocated participants (ie, intention to treat), which yielded an average difference in LDL cholesterol of 1.0 mmol/L (39 mg/dL) during the 5-year treatment period. Both among the participants who presented with diabetes and among those who did not, there were highly significant reductions of about a quarter in the first event rate for major coronary events, for strokes, and for revascularisations. For the first occurrence of any of these major vascular events among participants with diabetes, there was a definite 22% (95% CI 13-30) reduction in the event rate (601 [20.2%] simvastatin-allocated vs 748 [25.1%] placebo-allocated, p<0.0001), which was similar to that among the other high-risk individuals studied. There were also highly significant reductions of 33% (95% CI 17-46, p=0.0003) among the 2912 diabetic participants who did not have any diagnosed occlusive arterial disease at entry, and of 27% (95% CI 13-40, p=0.0007) among the 2426 diabetic participants whose pretreatment LDL cholesterol concentration was below 3.0 mmol/L (116 mg/dL). The proportional reduction in risk was also about a quarter among various other subcategories of diabetic patient studied, including: those with different duration, type, or control of diabetes; those aged over 65 years at entry or with hypertension; and those with total cholesterol below 5.0 mmol/L (193 mg/dL). In addition, among participants who had a first major vascular event following randomisation, allocation to simvastatin reduced the rate of subsequent events during the scheduled treatment period. The present study provides direct evidence that cholesterol-lowering therapy is beneficial for people with diabetes even if they do not already have manifest coronary disease or high cholesterol concentrations. Allocation to 40 mg simvastatin daily reduced the rate of first major vascular events by about a quarter in a wide range of diabetic patients studied. After making allowance for non-compliance, actual use of this statin regimen would probably reduce these rates by about a third. For example, among the type of diabetic patient studied without occlusive arterial disease, 5 years of treatment would be expected to prevent about 45 people per 1000 from having at least one major vascular event (and, among these 45 people, to prevent about 70 first or subsequent events during this treatment period). Statin therapy should now be considered routinely for all diabetic patients at sufficiently high risk of major vascular events, irrespective of their initial cholesterol concentrations.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Diabetes
                WJD
                World Journal of Diabetes
                Baishideng Publishing Group Inc
                1948-9358
                15 January 2018
                15 January 2018
                : 9
                : 1
                : 1-24
                Affiliations
                Department of Endocrinology, Lviv National Medical University Named by Danylo Halitsky, Lviv 79010, Ukraine. serhiyenko@ 123456inbox.ru
                Department of Endocrinology, Lviv National Medical University Named by Danylo Halitsky, Lviv 79010, Ukraine
                Author notes

                Author contributions: Serhiyenko VA and Serhiyenko AA contributed equally to this work, they have conceptualized, designed, performed and wrote the review.

                Correspondence to: Victoria A Serhiyenko, MD, PhD, Department of Endocrinology, Lviv National Medical University Named by Danylo Halitsky, Pekarska 69 Str., Lviv 79010, Ukraine. serhiyenko@ 123456inbox.ru

                Telephone: +380-322-769496 Fax: +380-322-769496

                Article
                jWJD.v9.i1.pg1
                10.4239/wjd.v9.i1.1
                5763036
                29359025
                ab2b037d-1aef-4600-890a-67d0078f969a
                ©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

                Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

                History
                : 28 October 2017
                : 9 December 2017
                : 29 December 2017
                Categories
                Review

                diabetes mellitus,risk factors,cardiac autonomic neuropathy,screening for cardiac autonomic neuropathy,cardiovascular reflex tests,orthostatic hypotension,heart rate variability,prophylaxis,treatment

                Comments

                Comment on this article