15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DEC2 Blocks the Effect of the ARNTL2/NPAS2 Dimer on the Expression of PER3 and DBP

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The expression of clock genes ARNTL2, NPAS2 and DEC2 are disturbed in rheumatoid arthritis, an autoimmune disease with circadian variation of symptoms. We have shown that TNF is a potent inducer of these genes. We investigated the regulation of ARNTL2 and NPAS2 by TNF and elucidated their effect on other clock gene expressions. Additionally, we studied the effect of DEC1 and DEC2 on ARNTL, ARNTL2 and NPAS2. Cultured primary human fibroblasts were stimulated with TNF and the effects on ARNTL2 and NPAS2 were studied with RT-qPCR and immunofluorescence staining. The role of NF-κB was analyzed using IKK-2 inhibitor IMD-0354. TNF promoted ARNTL2 localization into the nuclei. Similar to DEC2, the effects of TNF on ARNTL2 and NPAS2 expressions were mediated via NF-κB. Cloned ARNTL, ARNTL2, NPAS2, DEC1 and DEC2 were transfected into HEK293. The ARNTL2/NPAS2 dimer was a weaker inducer of PER3 and DBP than ARNTL/NPAS2. ARNTL2 and NPAS2 are regulated by TNF via the same mechanism as DEC2. Compared to their paralogs they have unique effects on other circadian components. Our data suggest that these genes are responsible, at least in fibroblasts, for the accurate adaptation of circadian timekeeping in individual cells during inflammation.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator.

          Mammalian circadian rhythms are generated by a feedback loop in which BMAL1 and CLOCK, players of the positive limb, activate transcription of the cryptochrome and period genes, components of the negative limb. Bmal1 and Per transcription cycles display nearly opposite phases and are thus governed by different mechanisms. Here, we identify the orphan nuclear receptor REV-ERBalpha as the major regulator of cyclic Bmal1 transcription. Circadian Rev-erbalpha expression is controlled by components of the general feedback loop. Thus, REV-ERBalpha constitutes a molecular link through which components of the negative limb drive antiphasic expression of components of the positive limb. While REV-ERBalpha influences the period length and affects the phase-shifting properties of the clock, it is not required for circadian rhythm generation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular architecture of the mammalian circadian clock.

            Circadian clocks coordinate physiology and behavior with the 24h solar day to provide temporal homeostasis with the external environment. The molecular clocks that drive these intrinsic rhythmic changes are based on interlocked transcription/translation feedback loops that integrate with diverse environmental and metabolic stimuli to generate internal 24h timing. In this review we highlight recent advances in our understanding of the core molecular clock and how it utilizes diverse transcriptional and post-transcriptional mechanisms to impart temporal control onto mammalian physiology. Understanding the way in which biological rhythms are generated throughout the body may provide avenues for temporally directed therapeutics to improve health and prevent disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the CLOCK protein in the mammalian circadian mechanism.

              The mouse Clock gene encodes a bHLH-PAS protein that regulates circadian rhythms and is related to transcription factors that act as heterodimers. Potential partners of CLOCK were isolated in a two-hybrid screen, and one, BMAL1, was coexpressed with CLOCK and PER1 at known circadian clock sites in brain and retina. CLOCK-BMAL1 heterodimers activated transcription from E-box elements, a type of transcription factor-binding site, found adjacent to the mouse per1 gene and from an identical E-box known to be important for per gene expression in Drosophila. Mutant CLOCK from the dominant-negative Clock allele and BMAL1 formed heterodimers that bound DNA but failed to activate transcription. Thus, CLOCK-BMAL1 heterodimers appear to drive the positive component of per transcriptional oscillations, which are thought to underlie circadian rhythmicity.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Circadian Rhythms
                J Circadian Rhythms
                1740-3391
                Journal of Circadian Rhythms
                Ubiquity Press
                1740-3391
                11 August 2017
                2017
                : 15
                : 6
                Affiliations
                [1 ]Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Helsinki, FI
                [2 ]ORTON Orthopaedic Hospital, Helsinki, FI
                [3 ]Center of Inflammation, Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, FI
                Article
                10.5334/jcr.149
                5624067
                ab30c96c-22c4-4479-a9e6-196ef4124394
                Copyright: © 2017 The Author(s)

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

                History
                Categories
                Research Article

                Cell biology
                circadian,inflammation,tnf,rheumatoid arthritis,arntl2,npas2,dec2
                Cell biology
                circadian, inflammation, tnf, rheumatoid arthritis, arntl2, npas2, dec2

                Comments

                Comment on this article