40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      La enhances IRES-mediated translation of laminin B1 during malignant epithelial to mesenchymal transition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of transcripts that harbor an internal ribosome entry site (IRES) are involved in cancer development via corresponding proteins. A crucial event in tumor progression referred to as epithelial to mesenchymal transition (EMT) allows carcinoma cells to acquire invasive properties. The translational activation of the extracellular matrix component laminin B1 (LamB1) during EMT has been recently reported suggesting an IRES-mediated mechanism. In this study, the IRES activity of LamB1 was determined by independent bicistronic reporter assays. Strong evidences exclude an impact of cryptic promoter or splice sites on IRES-driven translation of LamB1. Furthermore, no other LamB1 mRNA species arising from alternative transcription start sites or polyadenylation signals were detected that account for its translational control. Mapping of the LamB1 5′-untranslated region (UTR) revealed the minimal LamB1 IRES motif between −293 and −1 upstream of the start codon. Notably, RNA affinity purification showed that the La protein interacts with the LamB1 IRES. This interaction and its regulation during EMT were confirmed by ribonucleoprotein immunoprecipitation. In addition, La was able to positively modulate LamB1 IRES translation. In summary, these data indicate that the LamB1 IRES is activated by binding to La which leads to translational upregulation during hepatocellular EMT.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells.

          Metastasis of epithelial tumor cells can be associated with the acquisition of fibroblastoid features and the ability to invade stroma and blood vessels. Using matched in vivo and in vitro culture systems employing fully polarized, mammary epithelial cells, we report here that TGF-beta1 brings about these changes in Ras-transformed cells but not in normal cells. When grown in collagen gels in the absence of TGF-beta, both normal and Ras-transformed mammary epithelial cells form organ-like structures in which the cells maintain their epithelial characteristics. Under these conditions, treatment of normal cells with TGF-beta results in growth arrest. The same treatment renders Ras-transformed epithelial cells fibroblastoid, invasive, and resistant to growth inhibition by TGF-beta. After this epithelial-fibroblastoid conversion, the Ras-transformed cells start to secrete TGF-beta themselves, leading to autocrine maintenance of the invasive phenotype and recruitment of additional cells to become fibroblastoid and invasive. More important, this cooperation of activated Ha-Ras with TGF-beta1 is operative during in vivo tumorigenesis and, as in wound healing processes, is dependent on epithelial-stromal interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control.

            Hypoxia has recently been shown to activate the endoplasmic reticulum kinase PERK, leading to phosphorylation of eIF2alpha and inhibition of mRNA translation initiation. Using a quantitative assay, we show that this inhibition exhibits a biphasic response mediated through two distinct pathways. The first occurs rapidly, reaching a maximum at 1-2 h and is due to phosphorylation of eIF2alpha. Continued hypoxic exposure activates a second, eIF2alpha-independent pathway that maintains repression of translation. This phase is characterized by disruption of eIF4F and sequestration of eIF4E by its inhibitor 4E-BP1 and transporter 4E-T. Quantitative RT-PCR analysis of polysomal RNA indicates that the translation efficiency of individual genes varies widely during hypoxia. Furthermore, the translation efficiency of individual genes is dynamic, changing dramatically during hypoxic exposure due to the initial phosphorylation and subsequent dephosphorylation of eIF2alpha. Together, our data indicate that acute and prolonged hypoxia regulates mRNA translation through distinct mechanisms, each with important contributions to hypoxic gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor.

              Cytoplasmic sorting of mRNAs by microtubule-based transport is widespread, yet very little is known at the molecular level about how specific transcripts are linked to motor complexes. In Drosophila, minus-end-directed transport of developmentally important transcripts by the dynein motor is mediated by seemingly divergent mRNA elements. Here we provide evidence that direct recognition of these mRNA localization signals is mediated by the Egalitarian (Egl) protein. Egl and the dynein cofactor Bicaudal-D (BicD) are the only proteins from embryonic extracts that are abundantly and specifically enriched on RNA localization signals from transcripts of gurken, hairy, K10, and the I factor retrotransposon. In vitro assays show that, despite lacking a canonical RNA-binding motif, Egl directly recognizes active localization elements. We also reveal a physical interaction between Egl and a conserved domain for cargo recruitment in BicD and present data suggesting that Egl participates selectively in BicD-mediated transport of mRNA in vivo. Our work leads to the first working model for a complete connection between minus-end-directed mRNA localization signals and microtubules and reveals molecular strategies that are likely to be of general relevance for cargo transport by dynein.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2012
                January 2012
                6 September 2011
                6 September 2011
                : 40
                : 1
                : 290-302
                Affiliations
                1Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and 2Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
                Author notes
                *To whom correspondence should be addressed. Tel: +43 1 4277 65250; Fax: +43 1 4277 65239; Email: wolfgang.mikulits@ 123456meduniwien.ac.at

                †Deceased.

                Article
                gkr717
                10.1093/nar/gkr717
                3245933
                21896617
                ab3124e9-a7e9-4c7c-b731-30d801b4ddf2
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 March 2011
                : 26 July 2011
                : 21 August 2011
                Page count
                Pages: 13
                Categories
                Molecular Biology

                Genetics
                Genetics

                Comments

                Comment on this article