33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Anticancer potential of emodin

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traditional Chinese Medicine (TCM) is widely used in clinical research due to its low toxicity, low number of side effects, and low cost. Many components of common fruits and vegetables play well-documented roles as chemopreventive or chemotherapeutic agents that suppress tumorigenesis. Anthraquinones are commonly extracted from the Polygonaceae family of plants, e.g., Rheum palmatum and Rheum officinale. Some of the major chemical components of anthraquinone and its derivatives, such as aloe-emodin, danthron, emodin, chrysophanol, physcion, and rhein, have demonstrated potential anticancer properties. This review evaluates the pharmacological effects of emodin, a major component of Aloe vera. In particular, emodin demonstrates anti-neoplastic, anti-inflammatory, anti-angiogenesis, and toxicological potential for use in pharmacology, both in vitro and in vivo. Emodin demonstrates cytotoxic effects (e.g., cell death) through the arrest of the cell cycle and the induction of apoptosis in cancer cells. The overall molecular mechanisms of emodin include cell cycle arrest, apoptosis, and the promotion of the expression of hypoxia-inducible factor 1α, glutathione S-transferase P, N-acetyltransferase, and glutathione phase I and II detoxification enzymes while inhibiting angiogenesis, invasion, migration, chemical-induced carcinogen-DNA adduct formation, HER2/neu, CKII kinase, and p34cdc2 kinase in human cancer cells. Hopefully, this summary will provide information regarding the actions of emodin in cancer cells and broaden the application potential of chemotherapy to additional cancer patients in the future.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in cancer, vascular, rheumatoid and other disease.

          J Folkman (1995)
          Recent discoveries of endogenous negative regulators of angiogenesis, thrombospondin, angiostatin and glioma-derived angiogenesis inhibitory factor, all associated with neovascularized tumours, suggest a new paradigm of tumorigenesis. It is now helpful to think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth. The extent to which the negative regulators are decreased during this switch may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds

            The 3C-like protease (3CLpro) of SARS-coronavirus mediates the proteolytic processing of replicase polypeptides 1a and 1ab into functional proteins, becoming an important target for the drug development. In this study, Isatis indigotica root extract, five major compounds of I. indigotica root, and seven plant-derived phenolic compounds were tested for anti-SARS-CoV 3CLpro effects using cell-free and cell-based cleavage assays. Cleavage assays with the 3CLpro demonstrated that IC50 values were in micromolar ranges for I. indigotica root extract, indigo, sinigrin, aloe emodin and hesperetin. Sinigrin (IC50: 217 μM) was more efficient in blocking the cleavage processing of the 3CLpro than indigo (IC50: 752 μM) and beta-sitosterol (IC50: 1210 μM) in the cell-based assay. Only two phenolic compounds aloe emodin and hesperetin dose-dependently inhibited cleavage activity of the 3CLpro, in which the IC50 was 366 μM for aloe emodin and 8.3 μM for hesperetin in the cell-based assay.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants.

              Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the biological system's ability to detoxify these reactive intermediates. Mammalian cells have elaborate antioxidant defense mechanisms to control the damaging effects of ROS. Glutathione peroxidase (GPx), a selenoenzyme, plays a key role in protecting the organism from oxidative damage by catalyzing the reduction of harmful hydroperoxides with thiol cofactors. The selenocysteine residue at the active site forms a "catalytic triad" with tryptophan and glutamine, which activates the selenium moiety for an efficient reduction of peroxides. After the discovery that ebselen, a synthetic organoselenium compound, mimics the catalytic activity of GPx both in vitro and in vivo, several research groups developed a number of small-molecule selenium compounds as functional mimics of GPx, either by modifying the basic structure of ebselen or by incorporating some structural features of the native enzyme. The synthetic mimics reported in the literature can be classified in three major categories: (i) cyclic selenenyl amides having a Se-N bond, (ii) diaryl diselenides, and (iii) aromatic or aliphatic monoselenides. Recent studies show that ebselen exhibits very poor GPx activity when aryl or benzylic thiols such as PhSH or BnSH are used as cosubstrates. Because the catalytic activity of each GPx mimic largely depends on the thiol cosubstrates used, the difference in the thiols causes the discrepancies observed in different studies. In this Account, we demonstrate the effect of amide and amine substituents on the GPx activity of various organoselenium compounds. The existence of strong Se···O/N interactions in the selenenyl sulfide intermediates significantly reduces the GPx activity. These interactions facilitate an attack of thiol at selenium rather than at sulfur, leading to thiol exchange reactions that hamper the formation of catalytically active selenol. Therefore, any substituent capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds. Interestingly, replacement of the sec-amide substituent by a tert-amide group leads to a weakening of Se···O interactions in the selenenyl sulfide intermediates. This modification results in 10- to 20-fold enhancements in the catalytic activities. Another strategy involving the replacement of tert-amide moieties by tert-amino substituents further increases the activity by 3- to 4-fold. The most effective modification so far in benzylamine-based GPx mimics appears to be either the replacement of a tert-amino substituent by a sec-amino group or the introduction of an additional 6-methoxy group in the phenyl ring. These strategies can contribute to a remarkable enhancement in the GPx activity. In addition to enhancing catalytic activity, a change in the substituents near the selenium moiety alters the catalytic mechanisms. The mechanistic investigations of functional mimics are useful not only for understanding the complex chemistry at the active site of GPx but also for designing and synthesizing novel antioxidants and anti-inflammatory agents.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomedicine (Taipei)
                Biomedicine (Taipei)
                BioMedicine
                EDP Sciences
                2211-8020
                2211-8039
                11 May 2012
                September 2012
                11 May 2012
                : 2
                : 3
                : 108-116
                Affiliations
                [a ]Department of Nutrition, China Medical University, Taichung 40402, Taiwan
                [b ]Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
                [c ]Department of Biotechnology, Asia University, Taichung 413, Taiwan
                Author notes
                [] Corresponding author. Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan. jgchung@ 123456mail.cmu.edu.tw
                Article
                S2211-8020(12)00024-1
                10.1016/j.biomed.2012.03.003
                7104001
                32289000
                ab38f280-8650-4a55-9173-158495c6a98e
                Copyright © 2012 Published by Elsevier B.V.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 19 January 2012
                : 6 February 2012
                : 28 March 2012
                Categories
                Article

                angiogenesis,apoptosis,cell cycle arrest,emodin,traditional chinese medicine (tcm)

                Comments

                Comment on this article