84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis.

          Author Summary

          MicroRNAs have been identified as playing important roles in tumor metastasis, but their impact on GC metastasis has been poorly explored. We have discovered miR-218, which functions as a suppressor of tumor metastasis and is correlated with clinical stage, lymph node metastasis, and prognosis in patients with GC. Our results show that miR-218 is part of a regulatory circuit involving the Slit-Robo1 pathway. In metastatic tumor cells, miR-218 was suppressed along with Slit3, one of its host genes. Meanwhile, Robo1, one of several Slit receptors, is upregulated in response to the decrease in miR-218, which in turn induced a reactive upregulation of the Slit-Robo1 pathway through an interaction with Slit2, thus facilitating tumor cell migration and invasion. Such findings not only provide new insights into the metastatic mechanisms in GC but also provide evidence for a novel miRNA–mediated regulatory mode of receptor signaling.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA-21 targets tumor suppressor genes in invasion and metastasis.

          MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs that target protein-coding mRNAs at the post-transcriptional level. Our previous studies suggest that mir-21 functions as an oncogene and has a role in tumorigenesis, in part through regulation of the tumor suppressor gene tropomyosin 1 (TPM1). Given that TPM1 has been implicated in cell migration, in this study we further investigated the role of mir-21 in cell invasion and tumor metastasis. We found that suppression of mir-21 in metastatic breast cancer MDA-MB-231 cells significantly reduced invasion and lung metastasis. Consistent with this, ectopic expression of TPM1 remarkably reduced cell invasion. Furthermore, we identified two additional direct mir-21 targets, programmed cell death 4 (PDCD4) and maspin, both of which have been implicated in invasion and metastasis. Like TPM1, PDCD4 and maspin also reduced invasiveness of MDA-MB-231 cells. Finally, the expression of PDCD4 and maspin inversely correlated with mir-21 expression in human breast tumor specimens, indicating the potential regulation of PDCD4 and maspin by mir-21 in these tumors. Taken together, the results suggest that, as an oncogenic miRNA, mir-21 has a role not only in tumor growth but also in invasion and tumor metastasis by targeting multiple tumor/metastasis suppressor genes. Therefore, suppression of mir-21 may provide a novel approach for the treatment of advanced cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA signature predicts survival and relapse in lung cancer.

            We investigated whether microRNA expression profiles can predict clinical outcome of NSCLC patients. Using real-time RT-PCR, we obtained microRNA expressions in 112 NSCLC patients, which were divided into the training and testing sets. Using Cox regression and risk-score analysis, we identified a five-microRNA signature for the prediction of treatment outcome of NSCLC in the training set. This microRNA signature was validated by the testing set and an independent cohort. Patients with high-risk scores in their microRNA signatures had poor overall and disease-free survivals compared to the low-risk-score patients. This microRNA signature is an independent predictor of the cancer relapse and survival of NSCLC patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma.

              We investigated the role of microRNAs (miRNAs) in the pathogenesis of human hepatocellular carcinoma (HCC). A genome-wide miRNA microarray was used to identify differentially expressed miRNAs in HCCs arisen on cirrhotic livers. Thirty-five miRNAs were identified. Several of these miRNAs were previously found deregulated in other human cancers, such as members of the let-7 family, mir-221, and mir-145. In addition, the hepato-specific miR-122a was found down-regulated in approximately 70% of HCCs and in all HCC-derived cell lines. Microarray data for let-7a, mir-221, and mir-122a were validated by Northern blot and real-time PCR analysis. Understanding the contribution of deregulated miRNAs to cancer requires the identification of gene targets. Here, we show that miR-122a can modulate cyclin G1 expression in HCC-derived cell lines and an inverse correlation between miR-122a and cyclin G1 expression exists in primary liver carcinomas. These results indicate that cyclin G1 is a target of miR-122a and expand our knowledge of the molecular alterations involved in HCC pathogenesis and of the role of miRNAs in human cancer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2010
                March 2010
                12 March 2010
                : 6
                : 3
                : e1000879
                Affiliations
                [1]State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes

                Conceived and designed the experiments: JT YP KW JL YN DF. Performed the experiments: JT YP LZ SS BW YG YZ TQ. Analyzed the data: JT QL DF. Contributed reagents/materials/analysis tools: XG QZ DF. Wrote the paper: JT.

                Article
                09-PLGE-RA-1212R3
                10.1371/journal.pgen.1000879
                2837402
                20300657
                ab393b2b-5078-49bc-9e57-d33c767b1aa9
                Tie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 July 2009
                : 10 February 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Gastroenterology and Hepatology/Gastrointestinal Cancers

                Genetics
                Genetics

                Comments

                Comment on this article