15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tanshinone-IIA attenuates the deleterious effects of oxidative stress in osteoporosis through the NF-κB signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoclasts are responsible for bone resorption caused by bone microstructural damage and bonerelated disorders. Evidence shows that tanshinone IIA (Tan-IIA), a traditional Chinese medicine, is used clinically as a drug for the treatment of cardiovascular and cerebrovascular diseases. However, the efficacy and mechanism underlying the effect of Tan-IIA on the viability of osteoclasts remain to be fully elucidated. The present study investigated the therapeutic effects of Tan-IIA on osteoblast differentiation and oxidative stress in vitro and in vivo. Cell viability was analyzed and oxidative stress was examined in the osteoblasts. Wnt1 sw/sw mice were used to investigate the therapeutic effects of Tan-IIA on spontaneous tibia fractures and severe osteopenia. The bone strength, collagen and mineral were examined in the tibia. Osteoblast activity was also analyzed in the experimental mice. The Tan-IIA-induced differentiation of osteoclasts and the mechanism of action were investigated in osteocytes. The data showed that Tan-IIA treatment improved cell viability. The data also demonstrated that Tan-IIA decreased the levels of H 2O 2, accumulation of reactive oxygen species and apoptosis of osteoblasts. Tan-IIA inhibited the deleterious outcomes triggered by oxidative stress. In addition, Tan-IIA inhibited the activation of nuclear factor (NF)-κB and its target genes, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase and cyclooxygenase 2, and increased the levels of TNF receptor-associated factor 1 and inhibitor of apoptosis protein-1/2 in the osteocytes. Furthermore, it was shown that Tan-IIA reduced the propensity to fractures and severe osteopenia in mice with osteoporosis. Tan-IIA also exhibited improved bone strength, mineral and collagen in the bone matrix of the experimental mice. It was found that the Tan-IIA-mediated benefits on osteoblast activity and function were through the NF-κB signaling pathway. Taken together, the data obtained in the present study suggested that Tan-IIA had protective effects against oxidative stress in osteoblastic differentiation in mice with osteoporosis by regulating the NF-κB signaling pathway.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited

          Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures.

            It has been suggested that oxidative stress is associated with the pathogenesis of osteoporosis. The objective of this study was to explore the association between a marker of oxidative stress and either bone turnover markers or bone mineral density (BMD) in postmenopausal women. In addition, the effects of oxidative stress on the formation of osteoclasts in human bone marrow cell culture were examined. We performed a cross-sectional analysis in healthy postmenopausal women aged 60-78 years (n = 135, 68.2 +/- 4.9). Oxidative stress was evaluated in the serum by measuring 8-hydroxy-2'-deoxyguanosine (8-OH-dG) levels. The biochemical markers of bone turnover and areal BMD were measured in all participants. Multivariate linear regression analysis revealed a negative association between 8-OH-dG levels and BMD of the lumbar spine, total hip, femoral neck, and trochanter and positive association with type I collagen C-telopeptide (ICTP) levels. The odds ratio of 8-OH-dG for osteoporosis was 1.54 (1.14-2.31, P = 0.003). In cultures of primary human marrow cells, H2O2 caused concentration-dependent activation of TRAP-positive multinucleated giant cells. H2O2 also increased the area of pits per osteoclast activity assay substrate. RT-PCR showed that H2O2 stimulated the expression of M-CSF and RANKL and increased the RANKL/OPG ratio. The data support the view that oxidative stress is associated with increased bone resorption and low bone mass in otherwise healthy women. In addition, RANKL and M-CSF stimulation induced by oxidative stress may participate in osteoclastogenesis in human bone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteoclast activity and subtypes as a function of physiology and pathology--implications for future treatments of osteoporosis.

              Osteoclasts have traditionally been associated exclusively with catabolic functions that are a prerequisite for bone resorption. However, emerging data suggest that osteoclasts also carry out functions that are important for optimal bone formation and bone quality. Moreover, recent findings indicate that osteoclasts have different subtypes depending on their location, genotype, and possibly in response to drug intervention. The aim of the current review is to describe the subtypes of osteoclasts in four different settings: 1) physiological, in relation to turnover of different bone types; 2) pathological, as exemplified by monogenomic disorders; 3) pathological, as identified by different disorders; and 4) in drug-induced situations. The profiles of these subtypes strongly suggest that these osteoclasts belong to a heterogeneous cell population, namely, a diverse macrophage-associated cell type with bone catabolic and anabolic functions that are dependent on both local and systemic parameters. Further insight into these osteoclast subtypes may be important for understanding cell-cell communication in the bone microenvironment, treatment effects, and ultimately bone quality.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                May 2018
                14 March 2018
                14 March 2018
                : 17
                : 5
                : 6969-6976
                Affiliations
                [1 ]Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
                [2 ]Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
                [3 ]Basic Medicine Institution, Public Health Center, Peking University, Beijing 100871, P.R. China
                Author notes
                Correspondence to: Professor Wanfu Wei, Department of Orthopedics, Tianjin Hospital, 406 Jiefang South Road, Hexi, Tianjin 300211, P.R. China, E-mail: weiwanfutianjin@ 123456163.com
                Article
                mmr-17-05-6969
                10.3892/mmr.2018.8741
                5928650
                29568934
                ab48c5c0-7f69-4b00-a47a-ed0ae8dd798e
                Copyright: © Zhu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 10 August 2016
                : 16 May 2017
                Categories
                Articles

                osteoclasts,tanshinone iia,oxidative stress,nuclear factor-κb

                Comments

                Comment on this article