12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stress Induced Polarization of Immune-Neuroendocrine Phenotypes in Gallus gallus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immune-neuroendocrine phenotypes (INPs) stand for population subgroups differing in immune-neuroendocrine interactions. While mammalian INPs have been characterized thoroughly in rats and humans, avian INPs were only recently described in Coturnix coturnix (quail). To assess the scope of this biological phenomenon, herein we characterized INPs in Gallus gallus (a domestic hen strain submitted to a very long history of strong selective breeding pressure) and evaluated whether a social chronic stress challenge modulates the individuals’ interplay affecting the INP subsets and distribution. Evaluating plasmatic basal corticosterone, interferon-γ and interleukin-4 concentrations, innate/acquired leukocyte ratio, PHA-P skin-swelling and induced antibody responses, two opposite INP profiles were found: LEWIS-like (15% of the population) and FISCHER-like (16%) hens. After chronic stress, an increment of about 12% in each polarized INP frequency was found at expenses of a reduction in the number of birds with intermediate responses. Results show that polarized INPs are also a phenomenon occurring in hens. The observed inter-individual variation suggest that, even after a considerable selection process, the population is still well prepared to deal with a variety of immune-neuroendocrine challenges. Stress promoted disruptive effects, leading to a more balanced INPs distribution, which represents a new substrate for challenging situations.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system.

          The brain and the immune system are the two major adaptive systems of the body. During an immune response the brain and the immune system "talk to each other" and this process is essential for maintaining homeostasis. Two major pathway systems are involved in this cross-talk: the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). This overview focuses on the role of SNS in neuroimmune interactions, an area that has received much less attention than the role of HPA axis. Evidence accumulated over the last 20 years suggests that norepinephrine (NE) fulfills the criteria for neurotransmitter/neuromodulator in lymphoid organs. Thus, primary and secondary lymphoid organs receive extensive sympathetic/noradrenergic innervation. Under stimulation, NE is released from the sympathetic nerve terminals in these organs, and the target immune cells express adrenoreceptors. Through stimulation of these receptors, locally released NE, or circulating catecholamines such as epinephrine, affect lymphocyte traffic, circulation, and proliferation, and modulate cytokine production and the functional activity of different lymphoid cells. Although there exists substantial sympathetic innervation in the bone marrow, and particularly in the thymus and mucosal tissues, our knowledge about the effect of the sympathetic neural input on hematopoiesis, thymocyte development, and mucosal immunity is extremely modest. In addition, recent evidence is discussed that NE and epinephrine, through stimulation of the beta(2)-adrenoreceptor-cAMP-protein kinase A pathway, inhibit the production of type 1/proinflammatory cytokines, such as interleukin (IL-12), tumor necrosis factor-alpha, and interferon-gamma by antigen-presenting cells and T helper (Th) 1 cells, whereas they stimulate the production of type 2/anti-inflammatory cytokines such as IL-10 and transforming growth factor-beta. Through this mechanism, systemically, endogenous catecholamines may cause a selective suppression of Th1 responses and cellular immunity, and a Th2 shift toward dominance of humoral immunity. On the other hand, in certain local responses, and under certain conditions, catecholamines may actually boost regional immune responses, through induction of IL-1, tumor necrosis factor-alpha, and primarily IL-8 production. Thus, the activation of SNS during an immune response might be aimed to localize the inflammatory response, through induction of neutrophil accumulation and stimulation of more specific humoral immune responses, although systemically it may suppress Th1 responses, and, thus protect the organism from the detrimental effects of proinflammatory cytokines and other products of activated macrophages. The above-mentioned immunomodulatory effects of catecholamines and the role of SNS are also discussed in the context of their clinical implication in certain infections, major injury and sepsis, autoimmunity, chronic pain and fatigue syndromes, and tumor growth. Finally, the pharmacological manipulation of the sympathetic-immune interface is reviewed with focus on new therapeutic strategies using selective alpha(2)- and beta(2)-adrenoreceptor agonists and antagonists and inhibitors of phosphodiesterase type IV in the treatment of experimental models of autoimmune diseases, fibromyalgia, and chronic fatigue syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk.

            The extent to which the biodiversity and community composition of ecosystems affect their functions is an issue that grows ever more compelling as human impacts on ecosystems increase. We present evidence that supports a novel function of vertebrate biodiversity, the buffering of human risk of exposure to Lyme-disease-bearing ticks. We tested the Dilution Effect model, which predicts that high species diversity in the community of tick hosts reduces vector infection prevalence by diluting the effects of the most competent disease reservoir, the ubiquitous white-footed mouse (Peromyscus leucopus). As habitats are degraded by fragmentation or other anthropogenic forces, some members of the host community disappear. Thus, species-poor communities tend to have mice, but few other hosts, whereas species-rich communities have mice, plus many other potential hosts. We demonstrate that the most common nonmouse hosts are relatively poor reservoirs for the Lyme spirochete and should reduce the prevalence of the disease by feeding, but rarely infecting, ticks. By accounting for nearly every host species' contribution to the number of larval ticks fed and infected, we show that as new host species are added to a depauperate community, the nymphal infection prevalence, a key risk factor, declines. We identify important "dilution hosts" (e.g., squirrels), characterized by high tick burdens, low reservoir competence, and high population density, as well as "rescue hosts" (e.g., shrews), which are capable of maintaining high disease risk when mouse density is low. Our study suggests that the preservation of vertebrate biodiversity and community composition can reduce the incidence of Lyme disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecological consequences of phenotypic plasticity.

              Phenotypic plasticity is widespread in nature, and often involves ecologically relevant behavioral, physiological, morphological and life-historical traits. As a result, plasticity alters numerous interactions between organisms and their abiotic and biotic environments. Although much work on plasticity has focused on its patterns of expression and evolution, researchers are increasingly interested in understanding how plasticity can affect ecological patterns and processes at various levels. Here, we highlight an expanding body of work that examines how plasticity can affect all levels of ecological organization through effects on demographic parameters, direct and indirect species interactions, such as competition, predation, and coexistence, and ultimately carbon and nutrient cycles.
                Bookmark

                Author and article information

                Contributors
                franco.nicolas.nazar@unc.edu.ar
                raul.marin@unc.edu.ar
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                14 August 2017
                14 August 2017
                2017
                : 7
                : 8102
                Affiliations
                [1 ]ISNI 0000 0001 0115 2557, GRID grid.10692.3c, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC) e Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, , Universidad Nacional de Córdoba, ; Cordoba, CP 5000 Argentina
                [2 ]ISNI 0000 0004 0467 2314, GRID grid.424810.b, NEIKER-Tecnalia, Arkaute Agrifood Campus, Departamento de Producción Animal, , Vitoria-Gasteiz E-01080 e IKERBASQUE, Basque Foundation for Science, ; Bilbao, Spain
                [3 ]Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Cordoba, CP 5000 Argentina
                Author information
                http://orcid.org/0000-0002-5282-5931
                http://orcid.org/0000-0002-9054-9528
                Article
                8733
                10.1038/s41598-017-08733-0
                5556001
                ab5fe1d2-29a7-40a6-b2d1-38472d0e06f4
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 March 2017
                : 14 July 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article