37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inflammatory resolution: new opportunities for drug discovery.

      Nature reviews. Drug discovery

      Anti-Inflammatory Agents, Non-Steroidal, adverse effects, therapeutic use, Arachidonic Acid, metabolism, physiology, Glucocorticoids, pharmacology, Histamine H1 Antagonists, Humans, Inflammation, drug therapy, physiopathology, Lipoxins, NF-kappa B, antagonists & inhibitors, Signal Transduction, drug effects

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 105

          • Record: found
          • Abstract: found
          • Article: not found

          PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.

           Sarah Ting,  C. Jiang,  B Seed (1998)
          The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor family of transcription factors, a large and diverse group of proteins that mediate ligand-dependent transcriptional activation and repression. Expression of PPAR-gamma is an early and pivotal event in the differentiation of adipocytes. Several agents that promote differentiation of fibroblast lines into adipocytes have been shown to be PPAR-gamma agonists, including several prostanoids, of which 15-deoxy-delta-prostaglandin J2 is the most potent, as well as members of a new class of oral antidiabetic agents, the thiazolidinediones, and a variety of non-steroidal anti-inflammatory drugs (NSAIDs). Here we show that PPAR-gamma agonists suppress monocyte elaboration of inflammatory cytokines at agonist concentrations similar to those found to be effective for the promotion of adipogenesis. Inhibition of cytokine production may help to explain the incremental therapeutic benefit of NSAIDs observed in the treatment of rheumatoid arthritis at plasma drug concentrations substantially higher than are required to inhibit prostaglandin G/H synthase (cyclooxygenase).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing

            Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with ω-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 ω-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX5 and 5,12,18R-triHEPE. These new compounds proved to be potent inhibitors of human polymorphonuclear leukocyte transendothelial migration and infiltration in vivo (ATL analogue > 5,12,18R-triHEPE > 18R-HEPE). Acetaminophen and indomethacin also permitted 18R-HEPE and 15R-HEPE generation with recombinant COX-2 as well as ω-5 and ω-9 oxygenations of other fatty acids that act on hematologic cells. These findings establish new transcellular routes for producing arrays of bioactive lipid mediators via COX-2–nonsteroidal antiinflammatory drug–dependent oxygenations and cell–cell interactions that impact microinflammation. The generation of these and related compounds provides a novel mechanism(s) for the therapeutic benefits of ω-3 dietary supplementation, which may be important in inflammation, neoplasia, and vascular diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Corpse clearance defines the meaning of cell death.

               Jane Savill,  V Fadok (2000)
              While philosophers seek the meaning of life, cell biologists are becoming ever more interested in the meaning of death. Apoptosis marks unwanted cells with 'eat me' signals that direct recognition, engulfment and degradation by phagocytes. Far from being the end of the story, these clearance events allow scavenger cells to confer meaning upon cell death. But if the phagocytic 'spin doctors' receive or transmit the wrong messages, trouble ensues.
                Bookmark

                Author and article information

                Journal
                15136788
                10.1038/nrd1383

                Comments

                Comment on this article