9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of mdig expression enhances DNA and histone methylation and metastasis of aggressive breast cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We previously reported that expression of an environmentally induced gene, mineral dust-induced gene ( mdig), predicts overall survival in breast cancer patients. In the present report, we further demonstrate the differential roles of mdig between earlier- and later-stage breast cancers. In noncancerous breast, mdig is a proliferation factor for cell growth and cell motility. In breast cancer, however, higher levels of mdig negatively regulate the migration and invasion of cancer cells. Assessment of global DNA methylation, chromatin accessibility and H3K9me3 heterochromatin signature suggests that silencing mdig enhances DNA and histone methylation. Through immunostaining and data mining, we found that mdig is significantly upregulated in noninvasive and/or earlier-stage breast cancers. In contrast, in triple-negative and other invasive breast cancers, diminished mdig expression was noted, indicating that the loss of mdig expression could be an important feature of aggressive breast cancers. Taken together, our data suggest that mdig is a new biomarker that likely promotes tumor growth in the early stages of breast cancer while acting as a tumor suppressor to inhibit invasion and metastasis in later-stage tumors.

          Breast cancer: Gene expression influences tumor development

          Differential expression of an environmentally-induced gene appears to influence the growth of breast cancer tumors, thus providing a valuable biomarker and therapeutic target. Environmental factors can influence cancerous tumor development by interfering with epigenetic processes such as DNA and histone methylation. For example, the mineral dust induced gene (mdig) is over-expressed in coal miners who are susceptible to lung cancer. Now, Fei Chen, a pioneer in toxicology and carcinogenesis research at the Wayne State University in Detroit, USA, and his team have demonstrated that mdig also plays important roles in breast cancer. The gene is upregulated in early, non-invasive tumors, where it regulates cell growth, motility and invasion by influencing DNA and histone methylation. However, mdig expression drops in later stage or more aggressive tumor types. When the researchers abrogated mdig expression completely, they observed an enhanced DNA and histone methylation, suggesting the gene has a demethylase role and is implicated in regulating the epigenetic landscape under neoplastic conditions.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Active DNA demethylation: many roads lead to Rome.

          DNA methylation is one of the best-characterized epigenetic modifications and has been implicated in numerous biological processes, including transposable element silencing, genomic imprinting and X chromosome inactivation. Compared with other epigenetic modifications, DNA methylation is thought to be relatively stable. Despite its role in long-term silencing, DNA methylation is more dynamic than originally thought as active DNA demethylation has been observed during specific stages of development. In the past decade, many enzymes have been proposed to carry out active DNA demethylation and growing evidence suggests that, depending on the context, this process may be achieved by multiple mechanisms. Insight into how DNA methylation is dynamically regulated will broaden our understanding of epigenetic regulation and have great implications in somatic cell reprogramming and regenerative medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic regulatory network controlling Th17 cell differentiation

            Despite their importance, the molecular circuits that control the differentiation of naïve T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here, we combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based tools for performing perturbations in primary T cells to systematically derive and experimentally validate a model of the dynamic regulatory network that controls Th17 differentiation. The network consists of two self-reinforcing, but mutually antagonistic, modules, with 12 novel regulators, whose coupled action may be essential for maintaining the balance between Th17 and other CD4+ T cell subsets. Overall, our study identifies and validates 39 regulatory factors, embeds them within a comprehensive temporal network and reveals its organizational principles, and highlights novel drug targets for controlling Th17 differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase

              DNA methylation is essential for mammalian development and physiology. Here we report that the developmentally regulated H19 lncRNA binds to and inhibits S-adenosylhomocysteine hydrolase (SAHH), the only mammalian enzyme capable of hydrolysing S-adenosylhomocysteine (SAH). SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases that methylate diverse cellular components, including DNA, RNA, proteins, lipids and neurotransmitters. We show that H19 knockdown activates SAHH, leading to increased DNMT3B-mediated methylation of an lncRNA-encoding gene Nctc1 within the Igf2-H19-Nctc1 locus. Genome-wide methylation profiling reveals methylation changes at numerous gene loci consistent with SAHH modulation by H19. Our results uncover an unanticipated regulatory circuit involving broad epigenetic alterations by a single abundantly expressed lncRNA that may underlie gene methylation dynamics of development and diseases and suggest that this mode of regulation may extend to other cellular components.
                Bookmark

                Author and article information

                Contributors
                fchen@wayne.edu
                Journal
                Signal Transduct Target Ther
                Signal Transduct Target Ther
                Signal Transduction and Targeted Therapy
                Nature Publishing Group UK (London )
                2095-9907
                2059-3635
                21 September 2018
                21 September 2018
                2018
                : 3
                : 25
                Affiliations
                [1 ]ISNI 0000 0001 1456 7807, GRID grid.254444.7, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, , Wayne State University, ; Detroit, MI 48201 USA
                [2 ]Synthesis Medchem Corp, 425 Changyang Street, Suzhou Industrial Park, Suzhou, 215025 China
                [3 ]ISNI 0000 0004 0421 8357, GRID grid.410425.6, City of Hope Institute, ; 1500 E. Duarte Road, Duarte, CA 91010 USA
                [4 ]ISNI 0000 0001 1456 7807, GRID grid.254444.7, Department of Oncology and Barbara Ann Karmanos Cancer Institute, , Wayne State University, ; Detroit, MI 48202 USA
                Article
                27
                10.1038/s41392-018-0027-4
                6147911
                30254753
                ab7d7432-ed19-40d5-8f6b-3f6232987081
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 May 2018
                : 17 July 2018
                : 22 July 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000066, U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS);
                Award ID: R01 ES020137
                Award ID: R01 ES017217
                Award ID: R01 ES028263
                Award ID: P30 ES020957
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Comments

                Comment on this article