27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmaceutical quality of seven generic Levodopa/Benserazide products compared with original Madopar® / Prolopa®

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          By definition, a generic product is considered interchangeable with the innovator brand product. Controversy exists about interchangeability, and attention is predominantly directed to contaminants. In particular for chronic, degenerative conditions such as in Parkinson’s disease (PD) generic substitution remains debated among physicians, patients and pharmacists. The objective of this study was to compare the pharmaceutical quality of seven generic levodopa/benserazide hydrochloride combination products marketed in Germany with the original product (Madopar® / Prolopa® 125, Roche, Switzerland) in order to evaluate the potential impact of Madopar® generics versus branded products for PD patients and clinicians.

          Methods

          Madopar® / Prolopa® 125 tablets and capsules were used as reference material. The generic products tested (all 100 mg/25 mg formulations) included four tablet and three capsule formulations. Colour, appearance of powder (capsules), disintegration and dissolution, mass of tablets and fill mass of capsules, content, identity and amounts of impurities were assessed along with standard physical and chemical laboratory tests developed and routinely practiced at Roche facilities. Results were compared to the original “shelf-life” specifications in use by Roche.

          Results

          Each of the seven generic products had one or two parameters outside the specifications. Deviations for the active ingredients ranged from +8.4% (benserazide) to −7.6% (levodopa) in two tablet formulations. Degradation products were measured in marked excess (+26.5%) in one capsule formulation. Disintegration time and dissolution for levodopa and benserazide hydrochloride at 30 min were within specifications for all seven generic samples analysed, however with some outliers.

          Conclusions

          Deviations for the active ingredients may go unnoticed by a new user of the generic product, but may entail clinical consequences when switching from original to generic during a long-term therapy. Degradation products may pose a safety concern. Our results should prompt caution when prescribing a generic of Madopar®/Prolopa®, and also invite to further investigations in view of a more comprehensive approach, both pharmaceutical and clinical.

          Related collections

          Most cited references 17

          • Record: found
          • Abstract: found
          • Article: not found

          Neurodegeneration and neuroprotection in Parkinson disease.

          Many of the motoric features that define Parkinson disease (PD) result primarily from the loss of the neuromelanin (NM)-containing dopamine (DA) neurons of the substantia nigra (SN), and to a lesser extent, other mostly catecholaminergic neurons, and are associated with cytoplasmic "Lewy body" inclusions in some of the surviving neurons. While there are uncommon instances of familial PD, and rare instances of known genetic causes, the etiology of the vast majority of PD cases remains unknown (i.e., idiopathic). Here we outline genetic and environmental findings related to PD epidemiology, suggestions that aberrant protein degradation may play a role in disease pathogenesis, and pathogenetic mechanisms including oxidative stress due to DA oxidation that could underlie the selectivity of neurodegeneration. We then outline potential approaches to neuroprotection for PD that are derived from current notions on disease pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bioequivalence and other unresolved issues in generic drug substitution.

            Substitution of generic drugs for brand-name products is highly controversial and often is met with suspicion by health care providers and patients. Historically, the debate has focused on the issue of bioequivalence, and clinical practice has identified a number of drug classes for which generic substitution should be approached with caution. Current bioequivalence requirements are based on a measure of average bioequivalence; however, there are fears that use of this measure may be inappropriate in the case of a drug with a narrow or wide therapeutic range or high intrasubject or intersubject variability. Under these circumstances, measures of individual and population bioequivalence are proposed to be more accurate than measures of average bioequivalence. This paper addresses issues of bioequivalence and other concerns with generic drug substitution. I conducted a MEDLINE search of the English-language literature containing the key terms generic, multisource, quality, and brand and published between 1973 and 2003. The names of branded pharmaceuticals whose patents had recently expired (eg, Ventolin HFA, Adalat, Capoten, Tagamet HB 200, and Valium) also were used to search for articles on generic substitution. Reference lists of relevant articles also were searched. Bioequivalence issues are presented together with more general concerns over generic drug substitution, such as consumer perception of risk, differences in product and packaging appearance, and differences in excipients. The literature reviewed act to highlight a number of different drug categories and patient subpopulations for which generic substitution can still prove to be problematic. I recommend that health care providers continue to exercise caution in the consideration of generic drug substitution under certain circumstances.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Compulsory generic switching of antiepileptic drugs: high switchback rates to branded compounds compared with other drug classes.

              Compulsory generic substitution of antiepileptic drugs (AEDs) may lead to adverse effects in epilepsy patients because of seizure recurrence or increased toxicity. The study objectives were (a) to quantify and compare the switchback rates from generic to brand-name AEDs versus non-AEDs, and (b) to assess clinical implications of switching from branded Lamictal to generic lamotrigine (LTG) and whether signals exist suggesting outcome worsening. By using a public-payer pharmacy-claims database from Ontario, Canada, switchback rates from generic to branded AEDs [Lamictal, Frisium (clobazam; CLB), and Depakene (VPA; divalproex)] were calculated and compared with non-AED long-term therapies, antihyperlipidemics and antidepressants, in January 2002 through March 2006. We then assessed pharmacy utilization and AED dosage among LTG patients switching back to branded Lamictal compared with those staying on generic formulation. The 1,354 patients (403 monotherapy, 951 polytherapy) were prescribed generic LTG, of whom 12.9% switched back to Lamictal (11.7% monotherapy, 13.4% polytherapy). Switchback rates of other AEDs were approximately 20% for CLB and VPA. The switchback rates for AEDs were substantially higher than for non-AEDs (1.5-2.9%). Significant increases in LTG doses were observed after generic substitution for those who did not switch back (6.2%; p<0.0001). The average number of codispensed AEDs and non-AED drugs significantly increased (p<0.0001) after LTG generic entry, especially in the generic group. These results reflect poor acceptance of switching AEDs to generic compounds. They may also indicate increased toxicity and/or loss of seizure control associated with generic AED use.
                Bookmark

                Author and article information

                Journal
                BMC Pharmacol Toxicol
                BMC Pharmacol Toxicol
                BMC Pharmacology & Toxicology
                BioMed Central
                2050-6511
                2013
                23 April 2013
                : 14
                : 24
                Affiliations
                [1 ]ClinResearch Ltd, Aesch, Switzerland
                [2 ]F. Hoffmann-La Roche Ltd, Basel, Switzerland
                [3 ]Pharmaceutical Care Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, Basel, 4056, Switzerland
                Article
                2050-6511-14-24
                10.1186/2050-6511-14-24
                3648491
                23617953
                Copyright ©2013 Gasser et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Comments

                Comment on this article

                Similar content 195

                Cited by 7

                Most referenced authors 137