+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Coronary Artery Healing Process after Bioresorbable Scaffold in Patients with Non-ST-Segment Elevation Myocardial Infarction: Rationale, Design, and Methodology of the HONEST Study

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background: Bioresorbable scaffolds (BRSs) is a relatively new approach in treating coronary artery stenosis. The initial results of the first commercially available scaffolds consisting of a backbone of poly-L-lactide raised safety concerns related to delayed resorption and healing. The magnesium alloy-based scaffold degrades via bio-corrosion within months, whereas it often takes several years for polymer scaffolds to degrade. The aim of the study was to assess the healing stage by optical coherence tomography (OCT) after 6 months in patients with non-ST-segment elevation myocardial infarct (NSTEMI) randomized to OCT or angiography-guided percutaneous coronary intervention with implantation of a magnesium sirolimus-eluting Magmaris scaffold (Magmaris; Biotronik, Bülach, Switzerland). Methods: We analyzed the healing process by comparing OCT at baseline and after 6 months. Five stages of healing were defined with stage 1 being the least healed and stage 5 demonstrating complete resorption and healing with no visible scaffold/remnant. The primary end point is a calculated healing score that is based on 5 subtypes of healing stage: (1) malapposed, (2) uncovered with no detection of smooth surface tissue on top of struts or remnants, (3) covered protruding, (4) covered embedded, and (5) complete healing with a smooth neointimal surface and no sign of struts or visible remnants assessed by OCT 6 months after the index procedure. Results: The impact of OCT-guided compared to angiography-guided scaffold implantation will be illuminated. Conclusion: The present study will provide new information on midterm healing properties of the magnesium BRS in patients with NSTEMI.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization.

          Late stent thrombosis (LST) after Cypher and Taxus drug-eluting stent placement has emerged as a major concern. Although the clinical predictors of LST have been reported, specific morphological and histological correlates of LST remain unknown. From a registry totaling 81 human autopsies of drug-eluting stents, 46 (62 lesions) had a drug-eluting stent implanted >30 days. We identified 28 lesions with thrombus and compared those with 34 of similar duration without thrombosis using computer-guided morphometric and histological analyses. LST was defined as an acute thrombus within a coronary artery stent in place >30 days. Multiple logistic generalized estimating equations modeling demonstrated that endothelialization was the best predictor of thrombosis. The morphometric parameter that best correlated with endothelialization was the ratio of uncovered to total stent struts per section. A univariable logistic generalized estimating equations model of occurrence of thrombus in a stent section versus ratio of uncovered to total stent struts per section demonstrated a marked increase in risk for LST as the number of uncovered struts increased. The odds ratio for thrombus in a stent with a ratio of uncovered to total stent struts per section >30% is 9.0 (95% CI, 3.5 to 22). The most powerful histological predictor of stent thrombosis was endothelial coverage. The best morphometric predictor of LST was the ratio of uncovered to total stent struts. Heterogeneity of healing is a common finding in drug-eluting stents with evidence of LST and demonstrates the importance of incomplete healing of the stented segment in the pathophysiology of LST.
            • Record: found
            • Abstract: found
            • Article: not found

            Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans.

            Although metallic stents are effective in preventing acute occlusion and reducing late restenosis after coronary angioplasty, many concerns still remain. Compared with metallic stents, poly-l-lactic acid (PLLA) stents are biodegradable and can deliver drugs locally. The aim of this study was to evaluate the feasibility, safety, and efficacy of the PLLA stent. Fifteen patients electively underwent PLLA Igaki-Tamai stent implantation for coronary artery stenoses. The Igaki-Tamai stent is made of a PLLA monopolymer, has a thickness of 0.17 mm, and has a zigzag helical coil pattern. A balloon-expandable covered sheath system was used, and the stent expanded by itself to its original size with an adequate temperature. A total of 25 stents were successfully implanted in 19 lesions in 15 patients, and angiographic success was achieved in all procedures. No stent thrombosis and no major cardiac event occurred within 30 days. Coronary angiography and intravascular ultrasound were serially performed 1 day, 3 months, and 6 months after the procedure. Angiographically, both the restenosis rate and target lesion revascularization rate per lesion were 10.5%; the rates per patient were 6.7% at 6 months. Intravascular ultrasound findings revealed no significant stent recoil at 1 day, and they revealed stent expansion at follow-up. No major cardiac event, except for repeat angioplasty, developed within 6 months. Our preliminary experience suggests that coronary PLLA biodegradable stents are feasible, safe, and effective in humans. Long-term follow-up with more patients will be required to validate the long-term efficacy of PLLA stents.
              • Record: found
              • Abstract: found
              • Article: not found

              A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial.

              A fully bioabsorbable drug-eluting coronary stent that scaffolds the vessel wall when needed and then disappears once the acute recoil and constrictive remodelling processes have subsided has theoretical advantages. The bioasorbable everolimus-eluting stent (BVS) has a backbone of poly-L-lactic acid that provides the support and a coating of poly-D,L-lactic acid that contains and controls the release of the antiproliferative agent everolimus. We assessed the feasibility and safety of this BVS stent. In this prospective, open-label study we enrolled 30 patients who had either stable, unstable, or silent ischaemia and a single de-novo lesion that was suitable for treatment with a single 3.0 x 12 mm or 3.0 x 18 mm stent. Patients were enrolled from four academic hospitals in Auckland, Rotterdam, Krakow, and Skejby. The composite endpoint was cardiac death, myocardial infarction, and ischaemia-driven target lesion revascularisation. Angiographic endpoints were available for 26 patients and intravascular-ultrasound endpoints for 24 patients. Clinical endpoints were assessed in all 30 patients at 6 and 12 months. In a subset of 13 patients, optical coherence tomography was undertaken at baseline and follow-up. Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00300131. Procedural success was 100% (30/30 patients), and device success 94% (29/31 attempts at implantation of the stent). At 1 year, the rate of major adverse cardiac events was 3.3%, with only one patient having a non-Q wave myocardial infarction and no target lesion revascularisations. No late stent thromboses were recorded. At 6-month follow-up, the angiographic in-stent late loss was 0.44 (0.35) mm and was mainly due to a mild reduction of the stent area (-11.8%) as measured by intravascular ultrasound. The neointimal area was small (0.30 [SD 0.44] mm2), with a minimal area obstruction of 5.5%. This study shows the feasibility of implantation of the bioabsorbable everolimus-eluting stent, with an acceptable in-stent late loss, minimal intrastent neointimal hyperplasia, and a low stent area obstruction. Abbott Vascular.

                Author and article information

                S. Karger AG
                March 2021
                01 February 2021
                : 146
                : 2
                : 161-171
                aDepartment of Cardiology, Odense University Hospital, Odense, Denmark
                bCardiovascular Research Foundation, New York Presbyterian Hospital, New York, New York, USA
                Author notes
                *Christian Oliver Fallesen, Department of Cardiology, Odense University Hospital, J. B. Winsløwsvej 4, DK–5000 Odense C (Denmark), christian.fallesen@rsyd.dk
                512417 Cardiology 2021;146:161–171
                © 2021 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 7, Tables: 1, Pages: 11
                CAD and AMI: Clinical Trial Design


                Comment on this article