53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of Vibrio cholerae Genome Sequences Reveals Unique rtxA Variants in Environmental Strains and an rtxA-Null Mutation in Recent Altered El Tor Isolates

      research-article
      ,
      mBio
      American Society of Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Vibrio cholerae genome sequences were analyzed for variation in the rtxA gene that encodes the multifunctional autoprocessing RTX (MARTX) toxin. To accommodate genomic analysis, a discrepancy in the annotated rtxA start site was resolved experimentally. The correct start site is an ATG downstream from rtxC resulting in a gene of 13,638 bp and deduced protein of 4,545 amino acids. Among the El Tor O1 and closely related O139 and O37 genomes, rtxA was highly conserved, with nine alleles differing by only 1 to 6 nucleotides in 100 years. In contrast, 12 alleles from environment-associated isolates are highly variable, at 1 to 3% by nucleotide and 3 to 7% by amino acid. The difference in variation rates did not represent a bias for conservation of the El Tor rtxA compared to that of other strains but rather reflected the lack of gene variation in overall genomes. Three alleles were identified that would affect the function of the MARTX toxin. Two environmental isolates carry novel arrangements of effector domains. These include a variant from RC385 that would suggest an adenylate cyclase toxin and from HE-09 that may have actin ADP-ribosylating activity. Within the recently emerged altered El Tor strains that have a classical ctxB gene, a mutation arose in rtxA that introduces a premature stop codon that disabled toxin function. This null mutant is the genetic background for subsequent emergence of the ctxB7 allele resulting in the strain that spread into Haiti in 2010. Thus, similar to classical strains, the altered El Tor pandemic strains eliminated rtxA after acquiring a classical ctxB.

          IMPORTANCE

          Pathogen evolution involves both gain and loss of factors that influence disease. In the environment, bacteria evolve rapidly, with nucleotide diversity arising by genetic modification. Such is occurring with Vibrio cholerae, exemplified by extensive diversity and unique variants of the rtxA-encoded multifunctional autoprocessing RTX (MARTX) toxin among environment-associated strains that cause localized diarrheal outbreaks and food-borne disease. In contrast, seventh pandemic El Tor V. cholerae strains associated with severe diarrhea have changed minimally until the altered El Tor emerged as the most frequent cause of cholera, including in the 2010 Haiti epidemic. These strains have increased virulence attributed to a new variant of the major virulence factor, cholera toxin. It is revealed that these strains also have an inactivated MARTX toxin gene. A similar inactivation occurred during classical cholera pandemics, highlighting that evolution of El Tor cholera is following a similar path of increased dependence on cholera toxin, while eliminating other secreted factors.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae

          Here we determine the complete genomic sequence of the Gram negative, γ-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the γ-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host ‘addiction’ genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen. Supplementary information The online version of this article (doi:10.1038/35020000) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RTX proteins: a highly diverse family secreted by a common mechanism

            Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cholera

                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                16 April 2013
                Mar-Apr 2013
                : 4
                : 2
                : e00624-12
                Affiliations
                [1]Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
                Author notes
                Address correspondence to Karla J. F. Satchell, k-satchell@ 123456northwestern.edu .

                Editor Claire Fraser, University of Maryland, School of Medicine

                Article
                mBio00624-12
                10.1128/mBio.00624-12
                3634609
                23592265
                aba0b778-eeb6-4bb1-9a0d-777de9677da0
                Copyright © 2013 Dolores and Satchell.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 December 2012
                : 20 March 2013
                Page count
                Pages: 9
                Categories
                Research Article
                Custom metadata
                March/April 2013

                Life sciences
                Life sciences

                Comments

                Comment on this article