18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive swimming in young frog tadpoles. A passive network of 30 multicompartmental neurons with unmyelinated axons was used to infer that: axon-axon gap junctions close to the soma gave the best match to experimentally measured coupling coefficients; axon diameter had a strong influence on coupling; most neurons were coupled indirectly via the axons of other neurons. When active channels were added, gap junctions could make action potential propagation along the thin axons unreliable. Increased sodium and decreased potassium channel densities in the initial axon segment improved action potential propagation. Modelling suggested that the single spike firing to step current injection observed in whole-cell recordings is not a cellular property but a dynamic consequence of shunting resulting from electrical coupling. Without electrical coupling, firing of the population during depolarising current was unsynchronised; with coupling, the population showed synchronous recruitment and rhythmic firing. When activated instead by increasing levels of modelled sensory pathway input, the population without electrical coupling was recruited incrementally to unpatterned activity. However, when coupled, the population was recruited all-or-none at threshold into a rhythmic swimming pattern: the tadpole “decided” to swim. Modelling emphasises uncertainties about fine unmyelinated axon physiology but, when informed by biological data, makes general predictions about gap junctions: locations close to the soma; relatively small numbers; many indirect connections between neurons; cause of action potential propagation failure in fine axons; misleading alteration of intrinsic firing properties. Modelling also indicates that electrical coupling within a population can synchronize recruitment of neurons and their pacemaker firing during rhythmic activity.

          Author Summary

          Some groups of nerve cells in the brain are connected to each other electrically where their processes make contact and form specialized “gap” junctions. The simplest function of electrical connections is to make activity propagate faster by avoiding the delays resulting from chemical messengers at synaptic connections. In other cases, especially in higher brain regions where more spread out nerve cells may be connected by their axons, the function of electrical coupling is less clear. To understand this type of electrical connection better we have built computer models of a group of electrically coupled nerve cells in the brain which control swimming in very young frog tadpoles. We show that the coupling can be indirect, via other members of the group, and can profoundly influence the properties of the nerve cells which would be recorded during real experiments. The main role of the coupling is to synchronise the firing of the group so they are all recruited together when the tadpole is stimulated and then fire in a rhythm suitable to drive swimming movements. The results from this simple animal raise issues which will help to understand coupling in more complex brains.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Two networks of electrically coupled inhibitory neurons in neocortex.

          Inhibitory interneurons are critical to sensory transformations, plasticity and synchronous activity in the neocortex. There are many types of inhibitory neurons, but their synaptic organization is poorly understood. Here we describe two functionally distinct inhibitory networks comprising either fast-spiking (FS) or low-threshold spiking (LTS) neurons. Paired-cell recordings showed that inhibitory neurons of the same type were strongly interconnected by electrical synapses, but electrical synapses between different inhibitory cell types were rare. The electrical synapses were strong enough to synchronize spikes in coupled interneurons. Inhibitory chemical synapses were also common between FS cells, and between FS and LTS cells, but LTS cells rarely inhibited one another. Thalamocortical synapses, which convey sensory information to the cortex, specifically and strongly excited only the FS cell network. The electrical and chemical synaptic connections of different types of inhibitory neurons are specific, and may allow each inhibitory network to function independently.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Action potential generation requires a high sodium channel density in the axon initial segment.

            The axon initial segment (AIS) is a specialized region in neurons where action potentials are initiated. It is commonly assumed that this process requires a high density of voltage-gated sodium (Na(+)) channels. Paradoxically, the results of patch-clamp studies suggest that the Na(+) channel density at the AIS is similar to that at the soma and proximal dendrites. Here we provide data obtained by antibody staining, whole-cell voltage-clamp and Na(+) imaging, together with modeling, which indicate that the Na(+) channel density at the AIS of cortical pyramidal neurons is approximately 50 times that in the proximal dendrites. Anchoring of Na(+) channels to the cytoskeleton can explain this discrepancy, as disruption of the actin cytoskeleton increased the Na(+) current measured in patches from the AIS. Computational models required a high Na(+) channel density (approximately 2,500 pS microm(-2)) at the AIS to account for observations on action potential generation and backpropagation. In conclusion, action potential generation requires a high Na(+) channel density at the AIS, which is maintained by tight anchoring to the actin cytoskeleton.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrical coupling and neuronal synchronization in the Mammalian brain.

              Certain neurons in the mammalian brain have long been known to be joined by gap junctions, which are the most common type of electrical synapse. More recently, cloning of neuron-specific connexins, increased capability of visualizing cells within brain tissue, labeling of cell types by transgenic methods, and generation of connexin knockouts have spurred a rapid increase in our knowledge of the role of gap junctions in neural activity. This article reviews the many subtleties of transmission mediated by gap junctions and the mechanisms whereby these junctions contribute to synchronous firing.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                8 May 2015
                May 2015
                : 11
                : 5
                : e1004240
                Affiliations
                [1 ]Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom
                [2 ]School of Biological Sciences, University of Bristol, Bristol, United Kingdom
                Northeastern University, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MJH SRS DJW AR. Wrote the paper: MJH SRS DJW AR.

                Article
                PCOMPBIOL-D-14-02306
                10.1371/journal.pcbi.1004240
                4425518
                25954930
                aba44c96-d3a7-4ea8-b862-752710f5903e
                © 2015 Hull et al

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.

                History
                : 23 December 2014
                : 15 March 2015
                Page count
                Figures: 9, Tables: 2, Pages: 26
                Funding
                The work was carried out as part of the PhD of Michael J. Hull when he was part of the Doctoral Training Centre at the University of Edinburgh. This programme was funded by the Biotechnology and Biological Sciences Research Council (BBSRC - http://www.bbsrc.ac.uk/), the Medical Research Council (MRC - http://www.mrc.ac.uk/) and the Engineering and Physical Sciences Research Council (EPSRC - http://www.epsrc.ac.uk/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article