54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Candida albicans-Epithelial Interactions: Dissecting the Roles of Active Penetration, Induced Endocytosis and Host Factors on the Infection Process

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Candida albicans frequently causes superficial infections by invading and damaging epithelial cells, but may also cause systemic infections by penetrating through epithelial barriers. C. albicans is a remarkable pathogen because it can invade epithelial cells via two distinct mechanisms: induced endocytosis, analogous to facultative intracellular enteropathogenic bacteria, and active penetration, similar to plant pathogenic fungi. Here we investigated the contributions of the two invasion routes of C. albicans to epithelial invasion. Using selective cellular inhibition approaches and differential fluorescence microscopy, we demonstrate that induced endocytosis contributes considerably to the early time points of invasion, while active penetration represents the dominant epithelial invasion route. Although induced endocytosis depends mainly on Als3-E–cadherin interactions, we observed E–cadherin independent induced endocytosis. Finally, we provide evidence of a protective role for serum factors in oral infection: human serum strongly inhibited C. albicans adhesion to, invasion and damage of oral epithelial cells.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Isogenic strain construction and gene mapping in Candida albicans.

          Genetic manipulation of Candida albicans is constrained by its diploid genome and asexual life cycle. Recessive mutations are not expressed when heterozygous and undesired mutations introduced in the course of random mutagenesis cannot be removed by genetic back-crossing. To circumvent these problems, we developed a genotypic screen that permitted identification of a heterozygous recessive mutation at the URA3 locus. The mutation was introduced by targeted mutagenesis, homologous integration of transforming DNA, to avoid introduction of extraneous mutations. The ura3 mutation was rendered homozygous by a second round of transformation resulting in a Ura- strain otherwise isogenic with the parental clinical isolate. Subsequent mutation of the Ura- strain was achieved by targeted mutagenesis using the URA3 gene as a selectable marker. URA3 selection was used repeatedly for the sequential introduction of mutations by flanking the URA3 gene with direct repeats of the Salmonella typhimurium hisG gene. Spontaneous intrachromosomal recombination between the flanking repeats excised the URA3 gene restoring a Ura- phenotype. These Ura- segregants were selected on 5-fluoroorotic acid-containing medium and used in the next round of mutagenesis. To permit the physical mapping of disrupted genes, the 18-bp recognition sequence of the endonuclease I-SceI was incorporated into the hisG repeats. Site-specific cleavage of the chromosome with I-SceI revealed the position of the integrated sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial adhesion and entry into host cells.

            Successful establishment of infection by bacterial pathogens requires adhesion to host cells, colonization of tissues, and in certain cases, cellular invasion-followed by intracellular multiplication, dissemination to other tissues, or persistence. Bacteria use monomeric adhesins/invasins or highly sophisticated macromolecular machines such as type III secretion systems and retractile type IV pili to establish a complex host/pathogen molecular crosstalk that leads to subversion of cellular functions and establishment of disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea.

              The blast fungus Magnaporthe grisea causes a serious disease on a wide variety of grasses including rice, wheat, and barley. Rice blast is the most serious disease of cultivated rice and therefore poses a threat to the world's most important food security crop. Here, I review recent progress toward understanding the molecular biology of plant infection by M. grisea, which involves development of a specialized cell, the appressorium. This dome-shaped cell generates enormous turgor pressure and physical force, allowing the fungus to breach the host cuticle and invade plant tissue. The review also considers the role of avirulence genes in M. grisea and the mechanisms by which resistant rice cultivars are able to perceive the fungus and defend themselves. Finally, the likely mechanisms that promote genetic diversity in M. grisea and our current understanding of the population structure of the blast fungus are evaluated.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                14 May 2012
                : 7
                : 5
                : e36952
                Affiliations
                [1 ]Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
                [2 ]Laboratoire Interaction Muqueuses-Agents transmissibles (EA 562), IFR Santé-STIC, Université de Bourgogne, Faculté de Médecine, Dijon, France
                [3 ]University Hospital, Dijon, France
                [4 ]Department of Dermatology, Eberhard-Karls-University Tübingen, Germany
                [5 ]Friedrich Schiller University, Jena, Germany
                [6 ]Center of Sepsis Control and Care, Jena, Germany
                University of Minnesota, United States of America
                Author notes

                Conceived and designed the experiments: BW DW FD BH. Performed the experiments: BW FC NJ SF MS DW. Analyzed the data: BW FC NJ DW. Contributed reagents/materials/analysis tools: MS BH. Wrote the paper: BW DW BH.

                Article
                PONE-D-11-12698
                10.1371/journal.pone.0036952
                3351431
                22606314
                abbbfde7-6a21-4e74-8411-3af3bdc15272
                Wächtler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 July 2011
                : 16 April 2012
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Microbiology
                Mycology
                Fungi
                Yeast
                Host-Pathogen Interaction
                Pathogenesis
                Model Organisms
                Yeast and Fungal Models
                Candida Albicans
                Molecular Cell Biology
                Cellular Types
                Epithelial Cells
                Medicine
                Infectious Diseases
                Fungal Diseases
                Superficial Mycoses

                Uncategorized
                Uncategorized

                Comments

                Comment on this article