10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of VMAT‐SABR treatment plans with flattening filter (FF) and flattening filter‐free (FFF) beam for localized prostate cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study is to investigate the feasibility of using a flattening filter‐free (FFF) beam with an endorectal balloon for stereotactic ablative body radiotherapy (SABR) of clinically localized prostate cancer. We assessed plans of SABR with volumetric‐modulated arc therapy (VMAT) that used a flattening filter (FF) beam and an FFF beam and compared the verification results of dosimetric quality assurance for all pretreatment plans. A total of 20 patients with prostate cancer were enrolled in the study. SABR plans using VMAT with two full arcs were optimized in the Eclipse treatment planning system. All plans prescribed 42.7 Gy in 7 fractions of 6.1 Gy each. Four SABR plans were computed for each patient: two with FF beams and two with FFF beams of 6 and 10 MV. For all plans, the cumulative dose‐volume histograms (DVHs) for the target volumes and organs at risk (OARs) were recorded and compared. Pretreatment quality assurance (QA) was performed using the I'm RT MatriXX system and radiochromic EBT3 film to verify treatment delivery, and gamma analysis was used to quantify the agreement between calculations and measurements. In addition, total monitor units (MUs) and delivery time were investigated as technical parameters of delivery. All four plans achieved adequate dose conformity to the target volumes and had comparable dosimetric data. The DVHs of all four plans for each patient were very similar. All plans were highly conformal with CI < 1.05 and CN > 0.90 , and the doses were homogeneous (HI = 0.08–0.15). Sparing for the bladder and rectum was slightly better with the 10 MV FF and FFF plans than with the 6 MV FF and FFF plans, but the difference was negligible. However, there was no significant difference in sparing for the other OARs. The mean agreement with the 3 % / 3 % mm criterion was higher than 97% for verifying all plans. For the 2 % / 2 % mm criterion, the corresponding agreement values were more than 90%, which showed that the plans were acceptable. The mean MUs and delivery time used were 1701 ± 101 and 3.02 ± 0.17 min for 6 MV FF, 1870 ± 116 and 2.01 ± 0.01 min for 6 MV FFF, 1471 ± 86 and 2.68 ± 0.14 min for 10 MV FF, and 1619 ± 101 and 2.00 ± 0.00 min for 10 MV FFF, respectively. In the current study, the dose distributions of the prostate SABR plans using 6 and 10 MV FFF beams were similar to those using 6 and 10 MV FF beams. However, this study confirmed that SABR treatment using an FFF beam had an advantage with respect to delivery time. In addition, all pretreatment plans were verified as acceptable and their results were comparable. Therefore, the results of this study suggest that the use of an FFF beam for prostate SABR is a feasible and efficient technique, if carefully applied.

          PACS numbers: 87.55.D, 87.55.dk

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate.

          This article presents a method of quantitative assessment of the degree of conformality and its designation by a single numerical value. A conformation number is introduced to evaluate objectively the degree of conformality. A comparison is made between the conformation number as found for external beam treatment plans and ultrasonically guided 125I seed implants for localized prostate cancer. The conformation number in case of a planning target volume irradiated with two opposed open beams, three open beams, and three beams with customized blocks amounted to 0.17, 0.39, and 0.65, respectively. The conformation number as found for ultrasonically guided permanent prostate implants using 125I seeds averaged 0.72. The conformation number is a convenient instrument for indicating the degree of conformality by a single numerical value. Treatments with a conformation number greater than 0.60 might be termed conformal radiotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy.

            Volumetric modulated arc therapy (VMAT) is a novel form of intensity-modulated radiotherapy (IMRT) optimization that allows the radiation dose to be delivered in a single gantry rotation of up to 360 degrees , using either a constant dose rate (cdr-VMAT) or variable dose rate (vdr-VMAT) during rotation. The goal of this study was to compare VMAT prostate RT plans with three-dimensional conformal RT (3D-CRT) and IMRT plans. The 3D-CRT, five-field IMRT, cdr-VMAT, and vdr-VMAT RT plans were created for 10 computed tomography data sets from patients undergoing RT for prostate cancer. The parameters evaluated included the doses to organs at risk, equivalent uniform doses, dose homogeneity and conformality, and monitor units required for delivery of a 2-Gy fraction. The IMRT and both VMAT techniques resulted in lower doses to normal critical structures than 3D-CRT plans for nearly all dosimetric endpoints analyzed. The lowest doses to organs at risk and most favorable equivalent uniform doses were achieved with vdr-VMAT, which was significantly better than IMRT for the rectal and femoral head dosimetric endpoints (p < 0.05) and significantly better than cdr-VMAT for most bladder and rectal endpoints (p < 0.05). The vdr-VMAT and cdr-VMAT plans required fewer monitor units than did the IMRT plans (relative reduction of 42% and 38%, respectively; p = 0.005) but more than for the 3D-CRT plans (p = 0.005). The IMRT and VMAT techniques achieved highly conformal treatment plans. The vdr-VMAT technique resulted in more favorable dose distributions than the IMRT or cdr-VMAT techniques, and reduced the monitor units required compared with IMRT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer.

              Volumetric modulated arc therapy (VMAT), a complex treatment strategy for intensity-modulated radiation therapy, may increase treatment efficiency and has recently been established clinically. This analysis compares VMAT against established IMRT and 3D-conformal radiation therapy (3D-CRT) delivery techniques. Based on CT datasets of 9 patients treated for prostate cancer step-and-shoot IMRT, serial tomotherapy (MIMiC), 3D-CRT and VMAT were compared with regard to plan quality and treatment efficiency. Two VMAT approaches (one rotation (VMAT1x) and one rotation plus a second 200 degrees rotation (VMAT2x)) were calculated for the plan comparison. Plan quality was assessed by calculating homogeneity and conformity index (HI and CI), dose to normal tissue (non-target) and D(95%) (dose encompassing 95% of the target volume). For plan efficiency evaluation, treatment time and number of monitor units (MU) were considered. For MIMiC/IMRT(MLC)/VMAT2x/VMAT1x/3D-CRT, mean CI was 1.5/1.23/1.45/1.51/1.46 and HI was 1.19/1.1/1.09/1.11/1.04. For a prescribed dose of 76 Gy, mean doses to organs-at-risk (OAR) were 50.69 Gy/53.99 Gy/60.29 Gy/61.59 Gy/66.33 Gy for the anterior half of the rectum and 31.85 Gy/34.89 Gy/38.75 Gy/38.57 Gy/55.43 Gy for the posterior rectum. Volumes of non-target normal tissue receiving > or =70% of prescribed dose (53 Gy) were 337 ml/284 ml/482 ml/505 ml/414 ml, for > or =50% (38 Gy) 869 ml/933 ml/1155 ml/1231 ml/1993 ml and for > or =30% (23 Gy) 2819 ml/3414 ml/3340 ml/3438 ml /3061 ml. D(95%) was 69.79 Gy/70.51 Gy/71,7 Gy/71.59 Gy/73.42 Gy. Mean treatment time was 12 min/6 min/3.7 min/1.8 min/2.5 min. All approaches yield treatment plans of improved quality when compared to 3D-conformal treatments, with serial tomotherapy providing best OAR sparing and VMAT being the most efficient treatment option in our comparison. Plans which were calculated with 3D-CRT provided good target coverage but resulted in higher dose to the rectum.
                Bookmark

                Author and article information

                Contributors
                jbchung1213@gmail.com
                Journal
                J Appl Clin Med Phys
                J Appl Clin Med Phys
                10.1002/(ISSN)1526-9914
                ACM2
                Journal of Applied Clinical Medical Physics
                John Wiley and Sons Inc. (Hoboken )
                1526-9914
                08 November 2015
                November 2015
                : 16
                : 6 ( doiID: 10.1002/acm2.2015.16.issue-6 )
                : 302-313
                Affiliations
                [ 1 ] Department of Radiation Oncology Seoul National University Bundang Hospital Seongnam Korea
                [ 2 ] Department of Biomedical Engineering The Catholic University of Korea Seoul Korea
                [ 3 ] Department of Radiation Oncology Konkuk University Hospital Seoul Korea
                [ 4 ] Department of Radiation Oncology Inje University Haeundae Paik Hospital Pusan Korea
                Author notes
                [*] [* ] a Corresponding author: Jin‐Beom Chung, Department of Radiation Oncology, Seoul National University Bundang Hospital, 82, Gumi‐ro 173, Beon‐gil, Bundang‐gu, Seongnam, 463‐707, Republic of Korea; phone: +82 (31) 787 7654; fax: +82 (31) 787 4019; email: jbchung1213@ 123456gmail.com

                Article
                ACM20302
                10.1120/jacmp.v16i6.5728
                5691012
                26699585
                abda8ed1-6978-48d1-9c38-4ea93f858ef3
                © 2015 The Authors.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 March 2015
                : 27 July 2015
                Page count
                Figures: 4, Tables: 5, References: 39, Pages: 12, Words: 5471
                Categories
                Radiation Oncology Physics
                Radiation Oncology Physics
                Custom metadata
                2.0
                acm20302
                November 2015
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.5 mode:remove_FC converted:16.11.2017

                prostate cancer,stereotactic ablative radiotherapy,flattening filter‐free beam

                Comments

                Comment on this article