15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A decision-tree to optimise control measures during the early stage of a foot-and-mouth disease epidemic.

      Preventive Veterinary Medicine
      Animal Husbandry, Animals, Animals, Domestic, Costs and Cost Analysis, Decision Trees, Disease Outbreaks, veterinary, Disease Transmission, Infectious, prevention & control, Foot-and-Mouth Disease, epidemiology, Risk Factors, Vaccination

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A decision-tree was developed to support decision making on control measures during the first days after the declaration of an outbreak of foot-and-mouth disease (FMD). The objective of the tree was to minimise direct costs and export losses of FMD epidemics under several scenarios based on livestock and herd density in the outbreak region, the possibility of airborne spread, and the time between first infection and first detection. The starting point of the tree was an epidemiological model based on a deterministic susceptible-infectious-recovered approach. The effect of four control strategies on FMD dynamics was modelled. In addition to the standard control strategy of stamping out and culling of high-risk contact herds, strategies involving ring culling within 1 km of an infected herd, ring-vaccination within 1 km of an infected herd, and ring-vaccination within 3 km of an infected herd were assessed. An economic model converted outbreak and control effects of farming and processing operations into estimates of direct costs and export losses. Ring-vaccination is the economically optimal control strategy for densely populated livestock areas whereas ring culling is the economically optimal control strategy for sparsely populated livestock areas.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Foot-and-mouth disease virus: a long known virus, but a current threat.

          Foot-and-mouth disease virus (FMDV) was the first animal virus identified. Since then, FMDV has become a model system in animal virology and a considerable amount of information on its structure, biology and vaccinology has been obtained. However, the disease that this virus produces (FMD) still constitutes one of the main animal health concerns. In this review, we have attempted to summarise the state of the knowledge in different basic and applied areas of FMDV research, with emphasis on those aspects relevant to the control of the disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Relative risks of the uncontrollable (airborne) spread of FMD by different species.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The classical swine fever epidemic 1997-1998 in The Netherlands: descriptive epidemiology.

              The objective of this paper is to describe the severe epidemic of classical swine fever (CSF) in The Netherlands in 1997-1998 under a policy of non-vaccination, intensive surveillance, pre-emptive slaughter and stamping out in an area which has one of the highest pig and herd densities in Europe. The primary outbreak was detected on 4 February 1997 on a mixed sow and finishing pig herd. A total of 429 outbreaks was observed during the epidemic, and approximately 700,000 pigs from these herds were slaughtered. Among these outbreaks were two artificial insemination centres, which resulted in a CSF-suspect declaration of 1680 pig herds (mainly located in the southern part of The Netherlands). The time between introduction of CSF virus (CSFV) into the country and diagnosis of CSF in the primary outbreak was estimated to be approximately 6 weeks. It is presumed that CSFV was spread from The Netherlands to Italy and Spain via shipment of infected piglets in the beginning of February 1997, before the establishment of a total stand-still of transportation. In June 1997, CSFV is presumed to be introduced into Belgium from The Netherlands. Pre-emptive slaughter of herds that had been in contact with infected herds or were located in close vicinity of infected herds, was carried out around the first two outbreaks. However, this policy was not further exercised till mid-April 1997, when pre-emptive slaughter became a standard operational procedure for the rest of the epidemic. In total, 1286 pig herds were pre-emptively slaughtered. (approximately 1.1 million pigs). A total of 44 outbreaks (10%) was detected via pre-emptive slaughter. When there were clinical signs, the observed symptoms in infected herds were mainly atypical: fever, apathy, ataxia or a combination of these signs. In 322 out of 429 outbreaks (75%), detection was bases on clinical signs observed: 32% was detected by the farmer, 25% by the veterinary practitioner, 10% of the outbreaks by tracing teams and 8% by screening teams of the veterinary authorities. In 76% of the outbreaks detected by clinical signs, the farmer reported to have seen clinical symptoms for less than 1 week before diagnosis, in 22% for 1-4 weeks before diagnosis, and in 4 herds (1%) the farmer reported to have seen clinical symptoms for more than 4 weeks before diagnosis. Transportation lorries played a major role in the transmission of CSFV before the primary outbreak was diagnosed. It is estimated that approximately 39 herds were already infected before the first measures of the eradication campaign came into force. After the first measures to stop the spread of CSFV had been implemented, the distribution of the most likely routes of transmission markedly changed. In most outbreaks, a neighbourhood infection was indicated. Basically, there were two reasons for this catastrophe. Firstly, there was the extent of the period between introduction of the virus in the region and detection of the first outbreak. As a result, CSFV had opportunities to spread from one herd to another during this period. Secondly, the measures initially taken did not prove sufficient in the swine- and herd-dense region involved.
                Bookmark

                Author and article information

                Comments

                Comment on this article