101
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinct Pathogenesis and Host Responses during Infection of C. elegans by P. aeruginosa and S. aureus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus–triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with potentially conserved roles also in mammals.

          Author Summary

          Pseudomonas aeruginosa and Staphylococcus aureus are bacteria that can form part of the human microbiota, but can also cause severe disease. Despite their great clinical importance, little is known about their interactions with the human host before disease onset, particularly regarding the molecules that host cells use to prevent and combat infection. The invertebrate Caenorhabditis elegans is a powerful model host to study host-pathogen interactions and, because of its simplicity and highly-developed experimental methods, can illuminate fundamental mechanisms of bacterial pathogenesis. We used C. elegans to understand the cellular events that occur during early stages of P. aeruginosa and S. aureus infection. We found that P. aeruginosa slowly colonizes the intestine, producing virulence-related membrane vesicles, and causing accumulation of electron-dense biofilm-like material on intestinal cells and abnormalities in them. In contrast, S. aureus colonizes rapidly, disrupting microvilli and lysing host cells. We found that these different strategies result in different host gene expression responses. Focusing on S. aureus infection, the C. elegans response is mainly microbicidal and detoxifying, aiding host survival and bearing similarities with the human response. Our study provides new insights into mechanisms that P. aeruginosa and S. aureus use to cause disease, and into C. elegans defenses, with potential implications for human immunity and disease.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Peptidoglycan structure and architecture.

          The peptidoglycan (murein) sacculus is a unique and essential structural element in the cell wall of most bacteria. Made of glycan strands cross-linked by short peptides, the sacculus forms a closed, bag-shaped structure surrounding the cytoplasmic membrane. There is a high diversity in the composition and sequence of the peptides in the peptidoglycan from different species. Furthermore, in several species examined, the fine structure of the peptidoglycan significantly varies with the growth conditions. Limited number of biophysical data on the thickness, elasticity and porosity of peptidoglycan are available. The different models for the architecture of peptidoglycan are discussed with respect to structural and physical parameters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Symbiotic bacteria direct expression of an intestinal bactericidal lectin.

            The mammalian intestine harbors complex societies of beneficial bacteria that are maintained in the lumen with minimal penetration of mucosal surfaces. Microbial colonization of germ-free mice triggers epithelial expression of RegIIIgamma, a secreted C-type lectin. RegIIIgamma binds intestinal bacteria but lacks the complement recruitment domains present in other microbe-binding mammalian C-type lectins. We show that RegIIIgamma and its human counterpart, HIP/PAP, are directly antimicrobial proteins that bind their bacterial targets via interactions with peptidoglycan carbohydrate. We propose that these proteins represent an evolutionarily primitive form of lectin-mediated innate immunity, and that they reveal intestinal strategies for maintaining symbiotic host-microbial relationships.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lung infections associated with cystic fibrosis.

              While originally characterized as a collection of related syndromes, cystic fibrosis (CF) is now recognized as a single disease whose diverse symptoms stem from the wide tissue distribution of the gene product that is defective in CF, the ion channel and regulator, cystic fibrosis transmembrane conductance regulator (CFTR). Defective CFTR protein impacts the function of the pancreas and alters the consistency of mucosal secretions. The latter of these effects probably plays an important role in the defective resistance of CF patients to many pathogens. As the modalities of CF research have changed over the decades from empirical histological studies to include biophysical measurements of CFTR function, the clinical management of this disease has similarly evolved to effectively address the ever-changing spectrum of CF-related infectious diseases. These factors have led to the successful management of many CF-related infections with the notable exception of chronic lung infection with the gram-negative bacterium Pseudomonas aeruginosa. The virulence of P. aeruginosa stems from multiple bacterial attributes, including antibiotic resistance, the ability to utilize quorum-sensing signals to form biofilms, the destructive potential of a multitude of its microbial toxins, and the ability to acquire a mucoid phenotype, which renders this microbe resistant to both the innate and acquired immunologic defenses of the host.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                July 2010
                July 2010
                1 July 2010
                : 6
                : 7
                : e1000982
                Affiliations
                [1 ]Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
                [2 ]Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
                [3 ]Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
                University of Toronto, Canada
                Author notes

                Conceived and designed the experiments: JEI ERT RLF FMA. Performed the experiments: JEI ERT RLF LGL BOC. Analyzed the data: JEI ERT RLF LGL BOC. Contributed reagents/materials/analysis tools: JEI. Wrote the paper: JEI FMA.

                Article
                10-PLPA-RA-2670R2
                10.1371/journal.ppat.1000982
                2895663
                20617181
                ac169dcd-d9c8-46a6-9753-ffb078eead2e
                Irazoqui et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 February 2010
                : 2 June 2010
                Page count
                Pages: 24
                Categories
                Research Article
                Genetics and Genomics/Genetics of the Immune System
                Immunology/Cellular Microbiology and Pathogenesis
                Immunology/Innate Immunity
                Infectious Diseases/Bacterial Infections
                Microbiology/Innate Immunity

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article