25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Species Diversity and Phylogeographical Affinities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The region of Churchill, Manitoba, contains a wide variety of habitats representative of both the boreal forest and arctic tundra and has been used as a model site for biodiversity studies for nearly seven decades within Canada. Much previous work has been done in Churchill to study the Daphnia pulex species complex in particular, but no study has completed a wide-scale survey on the crustacean species that inhabit Churchill's aquatic ecosystems using molecular markers. We have employed DNA barcoding to study the diversity of the Branchiopoda (Crustacea) in a wide variety of freshwater habitats and to determine the likely origins of the Churchill fauna following the last glaciation. The standard animal barcode marker (COI) was sequenced for 327 specimens, and a 3% divergence threshold was used to delineate potential species. We found 42 provisional and valid branchiopod species from this survey alone, including several cryptic lineages, in comparison with the 25 previously recorded from previous ecological works. Using published sequence data, we explored the phylogeographic affinities of Churchill's branchiopods, finding that the Churchill fauna apparently originated from all directions from multiple glacial refugia (including southern, Beringian, and high arctic regions). Overall, these microcrustaceans are very diverse in Churchill and contain multiple species complexes. The present study introduces among the first sequences for some understudied genera, for which further work is required to delineate species boundaries and develop a more complete understanding of branchiopod diversity over a larger spatial scale.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Biological identifications through DNA barcodes.

          Although much biological research depends upon species diagnoses, taxonomic expertise is collapsing. We are convinced that the sole prospect for a sustainable identification capability lies in the construction of systems that employ DNA sequences as taxon 'barcodes'. We establish that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals. First, we demonstrate that COI profiles, derived from the low-density sampling of higher taxonomic categories, ordinarily assign newly analysed taxa to the appropriate phylum or order. Second, we demonstrate that species-level assignments can be obtained by creating comprehensive COI profiles. A model COI profile, based upon the analysis of a single individual from each of 200 closely allied species of lepidopterans, was 100% successful in correctly identifying subsequent specimens. When fully developed, a COI identification system will provide a reliable, cost-effective and accessible solution to the current problem of species identification. Its assembly will also generate important new insights into the diversification of life and the rules of molecular evolution.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            An inexpensive, automation-friendly protocol for recovering high-quality DNA

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator.

              Astraptes fulgerator, first described in 1775, is a common and widely distributed neotropical skipper butterfly (Lepidoptera: Hesperiidae). We combine 25 years of natural history observations in northwestern Costa Rica with morphological study and DNA barcoding of museum specimens to show that A. fulgerator is a complex of at least 10 species in this region. Largely sympatric, these taxa have mostly different caterpillar food plants, mostly distinctive caterpillars, and somewhat different ecosystem preferences but only subtly differing adults with no genitalic divergence. Our results add to the evidence that cryptic species are prevalent in tropical regions, a critical issue in efforts to document global species richness. They also illustrate the value of DNA barcoding, especially when coupled with traditional taxonomic tools, in disclosing hidden diversity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                17 May 2011
                : 6
                : 5
                : e18364
                Affiliations
                [1 ]Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
                [2 ]Department of Systematics and Aquatic Ecology, El Colegio de la Frontera Sur, Chetumal Unit, Quintana Roo, Mexico
                University of Canterbury, New Zealand
                Author notes

                Conceived and designed the experiments: NWJ ME-G SJA. Performed the experiments: NWJ ME-G SJA. Analyzed the data: NWJ ME-G SJA. Contributed reagents/materials/analysis tools: NWJ ME-G SJA. Wrote the paper: NWJ ME-G SJA.

                Article
                PONE-D-10-02955
                10.1371/journal.pone.0018364
                3096620
                21610864
                ac20d791-3745-4155-8d76-8ddf4a226243
                Jeffery et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 October 2010
                : 5 March 2011
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Ecology
                Biodiversity
                Biogeography
                Evolutionary Biology
                Evolutionary Systematics
                Phylogenetics
                Evolutionary Ecology
                Genetics
                Animal Genetics
                Zoology
                Animal Phylogenetics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article