20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Five Ovine Mitochondrial Lineages Identified From Sheep Breeds of the Near East

      , , , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Archaeozoological evidence indicates that sheep were first domesticated in the Fertile Crescent. To search for DNA sequence diversity arising from previously undetected domestication events, this survey examined nine breeds of sheep from modern-day Turkey and Israel. A total of 2027 bp of mitochondrial DNA (mtDNA) sequence from 197 sheep revealed a total of 85 haplotypes and a high level of genetic diversity. Six individuals carried three haplotypes, which clustered separately from the known ovine mtDNA lineages A, B, and C. Analysis of genetic distance, mismatch distribution, and comparisons with wild sheep confirmed that these represent two additional mtDNA lineages denoted D and E. The two haplogroup E sequences were found to link the previously identified groups A and C. The single haplogroup D sequence branched with the eastern mouflon (Ovis orientalis), urial (O. vignei), and argali (O. ammon) sheep. High sequence diversity (K = 1.86%, haplogroup D and O. orientalis) indicates that the wild progenitor of this domestic lineage remains unresolved. The identification in this study of evidence for additional domestication events adds to the emerging view that sheep were recruited from wild populations multiple times in the same way as for other livestock species such as goat, cattle, and pig.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: not found
          • Article: not found

          Genetic Evidence for a Pleistocene Population Explosion

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nucleotide substitution rate of mammalian mitochondrial genomes.

            We present here for the first time a comprehensive study based on the analysis of closely related organisms to provide an accurate determination of the nucleotide substitution rate in mammalian mitochondrial genomes. This study examines the evolutionary pattern of the different functional mtDNA regions as accurately as possible on the grounds of available data, revealing some important "genomic laws." The main conclusions can be summarized as follows. (1) High intragenomic variability in the evolutionary dynamic of mtDNA was found. The substitution rate is strongly dependent on the region considered, and slow- and fast-evolving regions can be identified. Nonsynonymous sites, the D-loop central domain, and tRNA and rRNA genes evolve much more slowly than synonymous sites and the two peripheral D-loop region domains. The synonymous rate is fairly uniform over the genome, whereas the rate of nonsynonymous sites depends on functional constraints and therefore differs considerably between genes. (2) The commonly accepted statement that mtDNA evolves more rapidly than nuclear DNA is valid only for some regions, thus it should be referred to specific mitochondrial components. In particular, nonsynonymous sites show comparable rates in mitochondrial and nuclear genes; synonymous sites and small rRNA evolve about 20 times more rapidly and tRNAs about 100 times more rapidly in mitochondria than in their nuclear counterpart. (3) A species-specific evolution is particularly evident in the D-loop region. As the divergence times of the organism pairs under consideration are known with sufficient accuracy, absolute nucleotide substitution rates are also provided.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular clocks: when times are a-changin'.

              The molecular clock has proved to be extremely valuable in placing timescales on evolutionary events that would otherwise be difficult to date. However, debate has arisen about the considerable disparities between molecular and palaeontological or archaeological dates, and about the remarkably high mutation rates inferred in pedigree studies. We argue that these debates can be largely resolved by reference to the "time dependency of molecular rates", a recent hypothesis positing that short-term mutation rates and long-term substitution rates are related by a monotonic decline from the former to the latter. Accordingly, the extrapolation of rates across different timescales will result in invalid date estimates. We examine the impact of this hypothesis with respect to various fields, including human evolution, animal domestication and conservation genetics. We conclude that many studies involving recent divergence events will need to be reconsidered.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                March 23 2007
                March 2007
                March 2007
                December 28 2006
                : 175
                : 3
                : 1371-1379
                Article
                10.1534/genetics.106.068353
                1840082
                17194773
                ac27fa97-1f37-47bd-a3fb-16c9af66e4a4
                © 2006
                History

                Comments

                Comment on this article