57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Exercising Brain: Changes in Functional Connectivity Induced by an Integrated Multimodal Cognitive and Whole-Body Coordination Training

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          More hippocampal neurons in adult mice living in an enriched environment.

          Neurogenesis occurs in the dentate gyrus of the hippocampus throughout the life of a rodent, but the function of these new neurons and the mechanisms that regulate their birth are unknown. Here we show that significantly more new neurons exist in the dentate gyrus of mice exposed to an enriched environment compared with littermates housed in standard cages. We also show, using unbiased stereology, that the enriched mice have a larger hippocampal granule cell layer and 15 per cent more granule cell neurons in the dentate gyrus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The resting brain: unconstrained yet reliable.

            Recent years have witnessed an upsurge in the usage of resting-state functional magnetic resonance imaging (fMRI) to examine functional connectivity (fcMRI), both in normal and pathological populations. Despite this increasing popularity, concerns about the psychologically unconstrained nature of the "resting-state" remain. Across studies, the patterns of functional connectivity detected are remarkably consistent. However, the test-retest reliability for measures of resting state fcMRI measures has not been determined. Here, we quantify the test-retest reliability, using resting scans from 26 participants at 3 different time points. Specifically, we assessed intersession (>5 months apart), intrasession ( nonsignificant), 2) correlation valence (positive > negative), and 3) network membership (default mode > task positive network). Short- and long-term measures of the consistency of global connectivity patterns were highly robust. Finally, hierarchical clustering solutions were highly reproducible, both across participants and sessions. Our findings provide a solid foundation for continued examination of resting state fcMRI in typical and atypical populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beneficial effects of physical exercise on neuroplasticity and cognition.

              The human brain adapts to changing demands by altering its functional and structural properties ("neuroplasticity") which results in learning and acquiring skills. Convergent evidence from both human and animal studies suggests that physical activity facilitates neuroplasticity of certain brain structures and as a result cognitive functions. Animal studies have identified an enhancement of neurogenesis, synaptogenesis, angiogenesis and the release of neurotrophins as neural mechanisms mediating beneficial cognitive effects of physical exercise. This review summarizes behavioral consequences and neural correlates at the system level following physical exercise interventions in humans of different ages. The results suggest that physical exercise may trigger processes facilitating neuroplasticity and, thereby, enhances an individual's capacity to respond to new demands with behavioral adaptations. Indeed, some recent studies have suggested that combining physical and cognitive training might result in a mutual enhancement of both interventions. Moreover, new data suggest that to maintain the neuro-cognitive benefits induced by physical exercise, an increase in the cardiovascular fitness level must be maintained. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Neural Plast
                Neural Plast
                NP
                Neural Plasticity
                Hindawi Publishing Corporation
                2090-5904
                1687-5443
                2016
                27 December 2015
                : 2016
                : 8240894
                Affiliations
                Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
                Author notes

                Academic Editor: Feng Shi

                Article
                10.1155/2016/8240894
                4706972
                26819776
                ac2a319d-31fe-4934-a08f-6b287d34d2f7
                Copyright © 2016 Traute Demirakca et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 July 2015
                : 7 September 2015
                : 8 September 2015
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article