Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Temporal expression patterns of insulin-like growth factor binding protein-4 in the embryonic and postnatal rat brain

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Background

      IGFBP-4 has been considered as a factor involving in development of the central nervous system (CNS), but its role needs to be further clarified. In present study, the localization of IGFBP-4 expression in the embryonic forebrain, midbrain and hindbrain was determined using immunohistochemistry, and the levels of IGFBP-4 protein and mRNA were semi-quantified using RT-PCR and Western blot in the embryonic (forebrain, midbrain and hindbrain) and postnatal brain (cerebral cortex, cerebellum and midbrain).

      Results

      A clear immunoreactivity of IGFBP-4 covered almost the entire embryonic brain (forebrain, midbrain, hindbrain) from E10.5 to E18.5, except for the area near the ventricle from E14.5. The change of IGFBP-4 mRNA level was regularly from E10.5 to E18.5: its expression peaked at E13.5 and E14.5, followed by gradual decreasing from E15.5. The expression of IGFBP-4 protein was similar to that of mRNA in embryonic stage. After birth, the pattern of IGFBP-4 expression was shown to be rather divergent in different brain areas. In the cerebral cortex, the IGFBP-4 mRNA increased gradually after birth (P0), while the protein showed little changes from P0 to P28, but decreased significantly at P70. In the cerebellum, the IGFBP-4 mRNA decreased gradually from P0, reached the lowest level at P21, and then increased again. However, its protein level gradually increased from P0 to P70. In the midbrain, the IGFBP-4 mRNA first decreased and reached its lowest level at P28 before it increased, while the protein remained constant from P0 to P70. At P7, P14, P21, P28 and P70, the levels of IGFBP-4 mRNA in the cerebral cortex were significantly higher than that in the cerebellum or in the midbrain. Differently, the protein levels in the cerebellum were significantly higher than that either in the cerebral cortex or in the midbrain at P14, P21, P28 and P70.

      Conclusions

      The temporal expression pattern of IGFBP-4 in the embryonic brain from E10.5 to E18.5 was consistent with the course of neurogenesis in the ventricular zone, suggesting an important role of IGFBP-4 in regulating differentiation of neural stem cells. A strikingly higher abundance of the IGFBP-4 protein observed in the cerebellum from P14 to P70 suggests that IGFBP-4 may participate in the maintenance of cerebellar plasticity.

      Related collections

      Most cited references 52

      • Record: found
      • Abstract: found
      • Article: not found

      Mechanisms and functional implications of adult neurogenesis.

      The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the existing neural circuitry. We further address the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        Insulin-like growth factors and their binding proteins: biological actions.

         D Clemmons,  J Jones (1995)
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Cellular actions of the insulin-like growth factor binding proteins.

          In addition to their roles in IGF transport, the six IGF-binding proteins (IGFBPs) regulate cell activity in various ways. By sequestering IGFs away from the type I IGF receptor, they may inhibit mitogenesis, differentiation, survival, and other IGF-stimulated events. IGFBP proteolysis can reverse this inhibition or generate IGFBP fragments with novel bioactivity. Alternatively, IGFBP interaction with cell or matrix components may concentrate IGFs near their receptor, enhancing IGF activity. IGF receptor-independent IGFBP actions are also increasingly recognized. IGFBP-1 interacts with alpha(5)beta(1) integrin, influencing cell adhesion and migration. IGFBP-2, -3, -5, and -6 have heparin-binding domains and can bind glycosaminoglycans. IGFBP-3 and -5 have carboxyl-terminal basic motifs incorporating heparin-binding and additional basic residues that interact with the cell surface and matrix, the nuclear transporter importin-beta, and other proteins. Serine/threonine kinase receptors are proposed for IGFBP-3 and -5, but their signaling functions are poorly understood. Other cell surface IGFBP-interacting proteins are uncharacterized as functional receptors. However, IGFBP-3 binds and modulates the retinoid X receptor-alpha, interacts with TGFbeta signaling through Smad proteins, and influences other signaling pathways. These interactions can modulate cell cycle and apoptosis. Because IGFBPs regulate cell functions by diverse mechanisms, manipulation of IGFBP-regulated pathways is speculated to offer therapeutic opportunities in cancer and other diseases.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Beijing Institute for Brain Disorders, Beijing Centre for Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders, Key Laboratory for Neurodegenerative Diseases of The Ministry of Education, Capital Medical University, Beijing, 100069, P. R. China
            Contributors
            Journal
            BMC Neurosci
            BMC Neurosci
            BMC Neuroscience
            BioMed Central
            1471-2202
            2013
            31 October 2013
            : 14
            : 132
            24175938
            3871010
            1471-2202-14-132
            10.1186/1471-2202-14-132
            Copyright © 2013 Jiang et al.; licensee BioMed Central Ltd.

            This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Research Article

            Comments

            Comment on this article