13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity.

      ACS Nano

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Boron nitride (BN) is a promising semiconductor with a wide band gap ( approximately 6 eV). Here, we report the synthesis of vertically aligned BN nanosheets (BNNSs) on silicon substrates by microwave plasma chemical vapor deposition from a gas mixture of BF(3)-N(2)-H(2). The size, shape, thickness, density, and alignment of the BNNSs were well-controlled by appropriately changing the growth conditions. With changing the gas flow rates of BF(3) and H(2) as well as their ratio, the BNNSs evolve from three-dimensional with branches to two-dimensional with smooth surface and their thickness changes from 20 to below 5 nm. The growth of the BNNSs rather than uniform granular films is attributed to the particular chemical properties of the gas system, mainly the strong etching effect of fluorine. The alignment of the BNNSs is possibly induced by the electrical field generated in plasma sheath. Strong UV light emission with a broad band ranging from 200 to 400 nm and superhydrophobicity with contact angles over 150 degrees were obtained for the vertically aligned BNNSs. The present BNNSs possess the properties complementary to carbon nanosheets such as intrinsically semiconducting, high temperature stability, and high chemical inertness and may find applications in ultraviolet nanoelectronics, catalyst supports, electron field emission, and self-cleaning coatings, etc., especially those working at high temperature and in harsh environments.

          Related collections

          Author and article information

          Journal
          20047271
          10.1021/nn901204c

          Comments

          Comment on this article