3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fractionally Charged Zero-Energy Single-Particle Excitations in a Driven Fermi Sea

      Physical Review Letters
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Observation ofheAharonov-Bohm Oscillations in Normal-Metal Rings

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gigahertz quantized charge pumping

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Minimal-excitation states for electron quantum optics using levitons.

              The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the time domain. Finally, the generation technique could be applied to cold atomic gases, leading to the possibility of atomic levitons.
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                July 2016
                July 18 2016
                : 117
                : 4
                Article
                10.1103/PhysRevLett.117.046801
                ac3cc798-d6ab-4e09-89d5-91d6dde80142
                © 2016

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article