61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Base editing: precision chemistry on the genome and transcriptome of living cells

      ,
      Nature Reviews Genetics
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks (DSBs). DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing byproducts. In this Review, we summarize base editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision, and <i>in vivo</i> delivery of base editors, and discuss limitations and future directions of base editing for research and therapeutic applications. </p>

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements

          CRISPR-Cas9 is poised to become the gene editing tool of choice in clinical contexts. Thus far, exploration of Cas9-induced genetic alterations has been limited to the immediate vicinity of the target site and distal off-target sequences, leading to the conclusion that CRISPR-Cas9 was reasonably specific. Here we report significant on-target mutagenesis, such as large deletions and more complex genomic rearrangements at the targeted sites in mouse embryonic stem cells, mouse hematopoietic progenitors and a human differentiated cell line. Using long-read sequencing and long-range PCR genotyping, we show that DNA breaks introduced by single-guide RNA/Cas9 frequently resolved into deletions extending over many kilobases. Furthermore, lesions distal to the cut site and crossover events were identified. The observed genomic damage in mitotically active cells caused by CRISPR-Cas9 editing may have pathogenic consequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progress and problems with the use of viral vectors for gene therapy.

            Gene therapy has a history of controversy. Encouraging results are starting to emerge from the clinic, but questions are still being asked about the safety of this new molecular medicine. With the development of a leukaemia-like syndrome in two of the small number of patients that have been cured of a disease by gene therapy, it is timely to contemplate how far this technology has come, and how far it still has to go.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo

              Efficient intracellular delivery of proteins is needed to fully realize the potential of protein therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, poor endosomal escape, and limited in vivo efficacy. Here we report that common cationic lipid nucleic acid transfection reagents can potently deliver proteins that are fused to negatively supercharged proteins, that contain natural anionic domains, or that natively bind to anionic nucleic acids. This approach mediates the potent delivery of nM concentrations of Cre recombinase, TALE- and Cas9-based transcriptional activators, and Cas9:sgRNA nuclease complexes into cultured human cells in media containing 10% serum. Delivery of Cas9:sgRNA complexes resulted in up to 80% genome modification with substantially higher specificity compared to DNA transfection. This approach also mediated efficient delivery of Cre recombinase and Cas9:sgRNA complexes into the mouse inner ear in vivo, achieving 90% Cre-mediated recombination and 20% Cas9-mediated genome modification in hair cells.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Genetics
                Nat Rev Genet
                Springer Nature America, Inc
                1471-0056
                1471-0064
                October 15 2018
                Article
                10.1038/s41576-018-0059-1
                6535181
                30323312
                ac3d907b-40f3-454d-b5c2-d41121c87886
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article