70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epstein–Barr Virus DNase (BGLF5) induces genomic instability in human epithelial cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epstein–Barr Virus (EBV) DNase (BGLF5) is an alkaline nuclease and has been suggested to be important in the viral life cycle. However, its effect on host cells remains unknown. Serological and histopathological studies implied that EBV DNase seems to be correlated with carcinogenesis. Therefore, we investigate the effect of EBV DNase on epithelial cells. Here, we report that expression of EBV DNase induces increased formation of micronucleus, an indicator of genomic instability, in human epithelial cells. We also demonstrate, using γH2AX formation and comet assay, that EBV DNase induces DNA damage. Furthermore, using host cell reactivation assay, we find that EBV DNase expression repressed damaged DNA repair in various epithelial cells. Western blot and quantitative PCR analyses reveal that expression of repair-related genes is reduced significantly in cells expressing EBV DNase. Host shut-off mutants eliminate shut-off expression of repair genes and repress damaged DNA repair, suggesting that shut-off function of BGLF5 contributes to repression of DNA repair. In addition, EBV DNase caused chromosomal aberrations and increased the microsatellite instability (MSI) and frequency of genetic mutation in human epithelial cells. Together, we propose that EBV DNase induces genomic instability in epithelial cells, which may be through induction of DNA damage and also repression of DNA repair, subsequently increases MSI and genetic mutations, and may contribute consequently to the carcinogenesis of human epithelial cells.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic instabilities in human cancers.

          Whether and how human tumours are genetically unstable has been debated for decades. There is now evidence that most cancers may indeed be genetically unstable, but that the instability exists at two distinct levels. In a small subset of tumours, the instability is observed at the nucleotide level and results in base substitutions or deletions or insertions of a few nucleotides. In most other cancers, the instability is observed at the chromosome level, resulting in losses and gains of whole chromosomes or large portions thereof. Recognition and comparison of these instabilities are leading to new insights into tumour pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin

            DNA double-strand breaks (DSBs) are extremely dangerous lesions with severe consequences for cell survival and the maintenance of genomic stability. In higher eukaryotic cells, DSBs in chromatin promptly initiate the phosphorylation of the histone H2A variant, H2AX, at Serine 139 to generate γ-H2AX. This phosphorylation event requires the activation of the phosphatidylinositol-3-OH-kinase-like family of protein kinases, DNA-PKcs, ATM, and ATR, and serves as a landing pad for the accumulation and retention of the central components of the signaling cascade initiated by DNA damage. Regions in chromatin with γ-H2AX are conveniently detected by immunofluorescence microscopy and serve as beacons of DSBs. This has allowed the development of an assay that has proved particularly useful in the molecular analysis of the processing of DSBs. Here, we first review the role of γ-H2AX in DNA damage response in the context of chromatin and discuss subsequently the use of this modification as a surrogate marker for mechanistic studies of DSB induction and processing. We conclude with a critical analysis of the strengths and weaknesses of the approach and present some interesting applications of the resulting methodology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Platinum resistance: the role of DNA repair pathways.

              Although platinum chemotherapeutic agents such as carboplatin, cisplatin, and oxaliplatin are used to treat a broad range of malignant diseases, their efficacy in most cancers is limited by the development of resistance. There are multiple factors that contribute to platinum resistance but alterations of DNA repair processes have been known for some time to be important in mediating resistance. Recently acquired knowledge has provided insight into the molecular mechanisms of DNA repair pathways and their effect on response to chemotherapy. This review will discuss the most important DNA repair pathways known to be involved in the platinum response, i.e., nucleotide excision repair (NER) and mismatch repair (MMR), and will briefly touch on the role of BRCA in DNA repair. The therapeutic implications of alterations in DNA repair which affect response to platinum in the treatment of patients with malignant disease, such as excision repair cross-complementation group 1 (ERCC1) deficiency and mismatch repair deficiency, will be reviewed.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                April 2010
                23 December 2009
                24 December 2009
                : 38
                : 6
                : 1932-1949
                Affiliations
                1National Institute of Cancer Research, National Health Research Institutes, Zhunan, 2Centers for Disease Control, Taipei, 3Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 4Division of Infectious Diseases, National Health Research Institutes, Tainan and 5Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan
                Author notes
                *To whom correspondence should be addressed. Tel: +886 37 246166 (Ext. 35123); Fax: +886 37 586463; Email: cjy@ 123456nhri.org.tw
                Article
                gkp1169
                10.1093/nar/gkp1169
                2847232
                20034954
                ac481b6f-44b1-488a-949e-4aaddfbb1528
                © The Author(s) 2009. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 June 2009
                : 26 November 2009
                : 26 November 2009
                Categories
                Molecular Biology

                Genetics
                Genetics

                Comments

                Comment on this article