8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer’s disease models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is an essential negative regulator of MAPKs by dephosphorylating MAPKs at both tyrosine and threonine residues. Dysregulation of the MAPK signaling pathway has been associated with Alzheimer’s disease (AD). However, the role of MKP-1 in AD pathogenesis remains elusive. Here, we report that MKP-1 levels were decreased in the brain tissues of patients with AD and an AD mouse model. The reduction in MKP-1 gene expression appeared to be a result of transcriptional inhibition via transcription factor specificity protein 1 (Sp1) cis-acting binding elements in the MKP-1 gene promoter. Amyloid-β (Aβ)-induced Sp1 activation decreased MKP-1 expression. However, upregulation of MKP-1 inhibited the expression of both Aβ precursor protein (APP) and β-site APP-cleaving enzyme 1 by inactivating the extracellular signal-regulated kinase 1/2 (ERK)/MAPK signaling pathway. Furthermore, upregulation of MKP-1 reduced Aβ production and plaque formation and improved hippocampal long-term potentiation (LTP) and cognitive deficits in APP/PS1 transgenic mice. Our results demonstrate that MKP-1 impairment facilitates the pathogenesis of AD, whereas upregulation of MKP-1 plays a neuroprotective role to reduce Alzheimer-related phenotypes. Thus, this study suggests that MKP-1 is a novel molecule for AD treatment.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          The MAPK signaling cascade.

          The transmission of extracellular signals into their intracellular targets is mediated by a network of interacting proteins that regulate a large number of cellular processes. Cumulative efforts from many laboratories over the past decade have allowed the elucidation of one such signaling mechanism, which involves activations of several membranal signaling molecules followed by a sequential stimulation of several cytoplasmic protein kinases collectively known as mitogen-activated protein kinase (MAPK) signaling cascade. Up to six tiers in this cascade contribute to the amplification and specificity of the transmitted signals that eventually activate several regulatory molecules in the cytoplasm and in the nucleus to initiate cellular processes such as proliferation, differentiation, and development. Moreover, because many oncogenes have been shown to encode proteins that transmit mitogenic signals upstream of this cascade, the MAPK pathway provides a simple unifying explanation for the mechanism of action of most, if not all, nonnuclear oncogenes. The pattern of MAPK cascade is not restricted to growth factor signaling and it is now known that signaling pathways initiated by phorbol esters, ionophors, heat shock, and ligands for seven transmembrane receptors use distinct MAPK cascades with little or no cross-reactivity between them. In this review we emphasize primarily the first MAPK cascade to be discovered that uses the MEK and ERK isoforms and describe their involvement in different cellular processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo.

            Although extensive data support a central pathogenic role for amyloid beta protein (Abeta) in Alzheimer's disease, the amyloid hypothesis remains controversial, in part because a specific neurotoxic species of Abeta and the nature of its effects on synaptic function have not been defined in vivo. Here we report that natural oligomers of human Abeta are formed soon after generation of the peptide within specific intracellular vesicles and are subsequently secreted from the cell. Cerebral microinjection of cell medium containing these oligomers and abundant Abeta monomers but no amyloid fibrils markedly inhibited hippocampal long-term potentiation (LTP) in rats in vivo. Immunodepletion from the medium of all Abeta species completely abrogated this effect. Pretreatment of the medium with insulin-degrading enzyme, which degrades Abeta monomers but not oligomers, did not prevent the inhibition of LTP. Therefore, Abeta oligomers, in the absence of monomers and amyloid fibrils, disrupted synaptic plasticity in vivo at concentrations found in human brain and cerebrospinal fluid. Finally, treatment of cells with gamma-secretase inhibitors prevented oligomer formation at doses that allowed appreciable monomer production, and such medium no longer disrupted LTP, indicating that synaptotoxic Abeta oligomers can be targeted therapeutically.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alzheimer Amyloid-β Oligomer Bound to Post-Synaptic Prion Protein Activates Fyn to Impair Neurons

              SUMMARY Amyloid-beta (Aβ) oligomers are thought to trigger Alzheimer’s disease (AD) pathophysiology. Cellular Prion Protein (PrPC) selectively binds oligomeric Aβ and can mediate AD-related phenotypes. Here, we examined the specificity, distribution and signaling from Aβ/PrP complexes, seeking to explain how they might alter the function of NMDA receptors in neurons. PrPC is enriched in post-synaptic densities, and Aβ/PrPC interaction leads to Fyn kinase activation. Soluble Aβ assemblies derived from human AD brain interact with PrPC to activate Fyn. Aβ engagement of PrPC/Fyn signaling yields phosphorylation of the NR2B subunit of NMDA-receptors, which is coupled to an initial increase and then loss of surface NMDA-receptors. Aβ-induced LDH release and dendritic spine loss require both PrPC and Fyn, and human familial AD transgene-induced convulsive seizures do not occur in mice lacking PrPC. These results delineate an Aβ oligomer signal transduction pathway requiring PrPC and Fyn to alter synaptic function with relevance to AD.
                Bookmark

                Author and article information

                Contributors
                weihong@mail.ubc.ca
                guiqionghe@hotmail.com
                zfdong@cqmu.edu.cn
                Journal
                Signal Transduct Target Ther
                Signal Transduct Target Ther
                Signal Transduction and Targeted Therapy
                Nature Publishing Group UK (London )
                2095-9907
                2059-3635
                6 December 2019
                6 December 2019
                2019
                : 4
                : 58
                Affiliations
                [1 ]ISNI 0000 0000 8653 0555, GRID grid.203458.8, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, , Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, ; Chongqing, 400014 PR China
                [2 ]ISNI 0000 0000 8653 0555, GRID grid.203458.8, Department of Anatomy, Basic Medical College, , Chongqing Medical University, ; Chongqing, 400016 PR China
                [3 ]ISNI 0000 0001 2288 9830, GRID grid.17091.3e, Townsend Family Laboratories, Department of Psychiatry, , The University of British Columbia, ; Vancouver, BC V6T 1Z3 Canada
                [4 ]ISNI 0000 0001 0807 1581, GRID grid.13291.38, West China School of Basic Medical Sciences and Forensic Medicine, , Sichuan University, ; Chengdu, 610041 Sichuan China
                [5 ]ISNI 0000 0001 2288 9830, GRID grid.17091.3e, Brain Research Centre, , The University of British Columbia, ; Vancouver, BC V6T 2B5 Canada
                Article
                91
                10.1038/s41392-019-0091-4
                6895219
                31840000
                ac4db4e3-e3be-4e93-b38d-26cc7d77f8f0
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 August 2019
                : 1 November 2019
                : 1 November 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 91749116
                Award ID: 81622015
                Award ID: 81671257
                Award Recipient :
                Funded by: the Science and Technology Research Program of Chongqing Municipal Education Commission (grant No. KJZD-K201900403) and Innovation Research Group at Institutions of Higher Education in Chongqing (grant No. CXQTP19019019034).
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                diseases of the nervous system,molecular neuroscience

                Comments

                Comment on this article