23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MMP-12 Deficiency Attenuates Angiotensin II-Induced Vascular Injury, M2 Macrophage Accumulation, and Skin and Heart Fibrosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MMP-12, a macrophage-secreted elastase, is elevated in fibrotic diseases, including systemic sclerosis (SSc) and correlates with vasculopathy and fibrosis. The goal of this study was to investigate the role of MMP-12 in cardiac and cutaneous fibrosis induced by angiotensin II infusion. Ang II-induced heart and skin fibrosis was accompanied by a marked increase of vascular injury markers, including vWF, Thrombospondin-1 (TSP-1) and MMP-12, as well as increased number of PDGFRβ + cells. Furthermore Ang II infusion led to an accumulation of macrophages (Mac3 +) in the skin and in the perivascular and interstitial fibrotic regions of the heart. However, alternatively activated (Arg 1 +) macrophages were mainly present in the Ang II infused mice and were localized to the perivascular heart regions and to the skin, but were not detected in the interstitial heart regions. Elevated expression of MMP-12 was primarily found in macrophages and endothelial cells (CD31 +) cells, but MMP-12 was not expressed in the collagen producing cells. MMP-12 deficient mice (MMP12KO) showed markedly reduced expression of vWF, TSP1, and PDGFRβ around vessels and attenuation of dermal fibrosis, as well as the perivascular fibrosis in the heart. However, MMP-12 deficiency did not affect interstitial heart fibrosis, suggesting a heterogeneous nature of the fibrotic response in the heart. Furthermore, MMP-12 deficiency almost completely prevented accumulation of Arg 1 + cells, whereas the number of Mac3 + cells was partially reduced. Moreover production of profibrotic mediators such as PDGFBB, TGFβ1 and pSMAD2 in the skin and perivascular regions of the heart was also inhibited. Together, the results of this study show a close correlation between vascular injury markers, Arg 1 + macrophage accumulation and fibrosis and suggest an important role of MMP-12 in regulating these processes.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiology and pathophysiology of matrix metalloproteases

            Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn2+ ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with respect to substrate specificity, cellular and tissue localization, membrane binding and regulation that make this a very versatile family of enzymes with a multitude of physiological functions, many of which are still not fully understood. Essentially, all members of the MMP family have been linked to disease development, notably to cancer metastasis, chronic inflammation and the ensuing tissue damage as well as to neurological disorders. This has stimulated a flurry of studies into MMP inhibitors as therapeutic agents, as well as into measuring MMP levels as diagnostic or prognostic markers. As with most protein families, deciphering the function(s) of MMPs is difficult, as they can modify many proteins. Which of these reactions are physiologically or pathophysiologically relevant is often not clear, although studies on knockout animals, human genetic and epigenetic, as well as biochemical studies using natural or synthetic inhibitors have provided insight to a great extent. In this review, we will give an overview of 23 members of the human MMP family and describe functions, linkages to disease and structural and mechanistic features. MMPs can be grouped into soluble (including matrilysins) and membrane-anchored species. We adhere to the ‘MMP nomenclature’ and provide the reader with reference to the many, often diverse, names for this enzyme family in the introduction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases.

              A growing body of evidence supports the notion that angiotensin II (Ang II), the central product of the renin-angiotensin system, may play a central role not only in the etiology of hypertension but also in the pathophysiology of cardiovascular and renal diseases in humans. In this review, we focus on the role of Ang II in cardiovascular and renal diseases at the molecular and cellular levels and discuss up-to-date evidence concerning the in vitro and in vivo actions of Ang II and the pharmacological effects of angiotensin receptor antagonists in comparison with angiotensin-converting enzyme inhibitors. Ang II, via AT(1) receptor, directly causes cellular phenotypic changes and cell growth, regulates the gene expression of various bioactive substances (vasoactive hormones, growth factors, extracellular matrix components, cytokines, etc.), and activates multiple intracellular signaling cascades (mitogen-activated protein kinase cascades, tyrosine kinases, various transcription factors, etc.) in cardiac myocytes and fibroblasts, vascular endothelial and smooth muscle cells, and renal mesangial cells. These actions are supposed to participate in the pathophysiology of cardiac hypertrophy and remodeling, heart failure, vascular thickening, atherosclerosis, and glomerulosclerosis. Furthermore, in vivo recent evidence suggest that the activation of mitogen-activated protein kinases and activator protein-1 by Ang II may play the key role in cardiovascular and renal diseases. However, there are still unresolved questions and controversies on the mechanism of Ang II-mediated cardiovascular and renal diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                10 October 2014
                : 9
                : 10
                : e109763
                Affiliations
                [1 ]Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [2 ]Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [3 ]Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
                [4 ]Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
                Albert Einstein College of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LS MT. Performed the experiments: LS PH. Analyzed the data: LS PH MT. Wrote the paper: LS MT. Revised the manuscript and gave final approval: PH AF LR.

                Article
                PONE-D-14-28167
                10.1371/journal.pone.0109763
                4193823
                25302498
                ac50caf5-004e-4104-b88d-1c6aa07d711c
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 June 2014
                : 9 September 2014
                Page count
                Pages: 14
                Funding
                This study was supported by the National Institutes of Health (NIAMS) grant RO1 AR42334 and AR044883 to M. Trojanowska. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Epithelium
                Epithelial Cells
                Endothelial Cells
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                Pericytes
                Immunology
                Medicine and Health Sciences
                Cardiology
                Cardiovascular Diseases
                Dermatology
                Skin Diseases
                Rheumatology
                Connective Tissue Diseases
                Vascular Medicine
                Research and Analysis Methods
                Animal Studies
                Animal Models of Disease
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article