38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immediate effect of transcranial direct current stimulation combined with functional electrical stimulation on activity of the tibialis anterior muscle and balance of individuals with hemiparesis stemming from a stroke

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          [Purpose] The aim of the present study was to evaluate the immediate effects of transcranial direct current stimulation (tDCS) and functional electrical stimulation (FES) on activity of the tibialis anterior muscle (TA) and static balance of individuals with hemiparesis stemming from stroke. [Subjects and Methods] A randomized, double-blind, crossover, clinical trial conducted with 30 individuals with chronic post-stroke hemiparesis. Median frequency of electrical activity of the TA were determined using electromyography in five contractions concentrics and Static balance (body sway velocity and frequency), both before and immediately after the intervention. The participants were submitted to four 20-minute intervention protocols with 48-hour interval: anodal tDCS + sham FES; sham tDCS + active FES; anodal tDCS + active FES and sham tDCS + sham FES. Anodal tDCS was administered over C3 or C4, the cathode was positioned in the supraorbital region on the contralateral side and FES was administered to the affected TA. [Results] No significant differences among the protocols were found regarding electrical activity of the TA and static balance. [Conclusion] The results demonstrate that tDCS alone or in combination with FES had no immediate effect on electrical activity of the TA and static balance of the 30 individuals analyzed.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Development of recommendations for SEMG sensors and sensor placement procedures.

          The knowledge of surface electromyography (SEMG) and the number of applications have increased considerably during the past ten years. However, most methodological developments have taken place locally, resulting in different methodologies among the different groups of users.A specific objective of the European concerted action SENIAM (surface EMG for a non-invasive assessment of muscles) was, besides creating more collaboration among the various European groups, to develop recommendations on sensors, sensor placement, signal processing and modeling. This paper will present the process and the results of the development of the recommendations for the SEMG sensors and sensor placement procedures. Execution of the SENIAM sensor tasks, in the period 1996-1999, has been handled in a number of partly parallel and partly sequential activities. A literature scan was carried out on the use of sensors and sensor placement procedures in European laboratories. In total, 144 peer-reviewed papers were scanned on the applied SEMG sensor properties and sensor placement procedures. This showed a large variability of methodology as well as a rather insufficient description. A special workshop provided an overview on the scientific and clinical knowledge of the effects of sensor properties and sensor placement procedures on the SEMG characteristics. Based on the inventory, the results of the topical workshop and generally accepted state-of-the-art knowledge, a first proposal for sensors and sensor placement procedures was defined. Besides containing a general procedure and recommendations for sensor placement, this was worked out in detail for 27 different muscles. This proposal was evaluated in several European laboratories with respect to technical and practical aspects and also sent to all members of the SENIAM club (>100 members) together with a questionnaire to obtain their comments. Based on this evaluation the final recommendations of SENIAM were made and published (SENIAM 8: European recommendations for surface electromyography, 1999), both as a booklet and as a CD-ROM. In this way a common body of knowledge has been created on SEMG sensors and sensor placement properties as well as practical guidelines for the proper use of SEMG.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex.

            The development of stimulus selectivity in the primary sensory cortex of higher vertebrates is considered in a general mathematical framework. A synaptic evolution scheme of a new kind is proposed in which incoming patterns rather than converging afferents compete. The change in the efficacy of a given synapse depends not only on instantaneous pre- and postsynaptic activities but also on a slowly varying time-averaged value of the postsynaptic activity. Assuming an appropriate nonlinear form for this dependence, development of selectivity is obtained under quite general conditions on the sensory environment. One does not require nonlinearity of the neuron's integrative power nor does one need to assume any particular form for intracortical circuitry. This is first illustrated in simple cases, e.g., when the environment consists of only two different stimuli presented alternately in a random manner. The following formal statement then holds: the state of the system converges with probability 1 to points of maximum selectivity in the state space. We next consider the problem of early development of orientation selectivity and binocular interaction in primary visual cortex. Giving the environment an appropriate form, we obtain orientation tuning curves and ocular dominance comparable to what is observed in normally reared adult cats or monkeys. Simulations with binocular input and various types of normal or altered environments show good agreement with the relevant experimental data. Experiments are suggested that could test our theory further.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients.

              Motor recovery after stroke depends on the integrity of ipsilesional motor circuits and interactions between the ipsilesional and contralesional hemispheres. In this sham-controlled randomized trial, we investigated whether noninvasive modulation of regional excitability of bilateral motor cortices in combination with physical and occupational therapy improves motor outcome after stroke. Twenty chronic stroke patients were randomly assigned to receive 5 consecutive sessions of either 1) bihemispheric transcranial direct current stimulation (tDCS) (anodal tDCS to upregulate excitability of ipsilesional motor cortex and cathodal tDCS to downregulate excitability of contralesional motor cortex) with simultaneous physical/occupational therapy or 2) sham stimulation with simultaneous physical/occupational therapy. Changes in motor impairment (Upper Extremity Fugl-Meyer) and motor activity (Wolf Motor Function Test) assessments were outcome measures while functional imaging parameters were used to identify neural correlates of motor improvement. The improvement of motor function was significantly greater in the real stimulation group (20.7% in Fugl-Meyer and 19.1% in Wolf Motor Function Test scores) when compared to the sham group (3.2% in Fugl-Meyer and 6.0% in Wolf Motor Function Test scores). The effects outlasted the stimulation by at least 1 week. In the real-stimulation group, stronger activation of intact ipsilesional motor regions during paced movements of the affected limb were found postintervention whereas no significant activation changes were seen in the control group. The combination of bihemispheric tDCS and peripheral sensorimotor activities improved motor functions in chronic stroke patients that outlasted the intervention period. This novel approach may potentiate cerebral adaptive processes that facilitate motor recovery after stroke. This study provides Class I evidence that for adult patients with ischemic stroke treated at least 5 months after their first and only stroke, bihemispheric tDCS and simultaneous physical/occupational therapy given over 5 consecutive sessions significantly improves motor function as measured by the Upper Extremity Fugl-Meyer assessment (raw change treated 6.1 ± 3.4, sham 1.2 ± 1.0).
                Bookmark

                Author and article information

                Journal
                J Phys Ther Sci
                J Phys Ther Sci
                JPTS
                Journal of Physical Therapy Science
                The Society of Physical Therapy Science
                0915-5287
                2187-5626
                07 December 2017
                December 2017
                : 29
                : 12
                : 2138-2146
                Affiliations
                [1) ] Postgraduate Program in Rehabilitation Sciences, University Nove de Julho: Rua Adolpho Pinto 109, Barra Funda, São Paulo, Brazil
                Author notes
                [* ]Corresponding author. Aline Marina Alves Fruhauf (E-mail: alinefruhauf@ 123456hotmail.com )
                Article
                jpts-2017-410
                10.1589/jpts.29.2138
                5890217
                29643591
                ac56b5b9-a05c-40c4-89ad-8959d9df8822
                2017©by the Society of Physical Therapy Science. Published by IPEC Inc.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/ )

                History
                : 05 August 2017
                : 20 September 2017
                Categories
                Original Article

                hemiparesis,transcranial direct current stimulation,functional electrical stimulation

                Comments

                Comment on this article

                scite_

                Similar content311

                Cited by6

                Most referenced authors1,856