28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disruption of Thyroid Hormone Activation in Type 2 Deiodinase Knockout Mice Causes Obesity With Glucose Intolerance and Liver Steatosis Only at Thermoneutrality

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Thyroid hormone accelerates energy expenditure; thus, hypothyroidism is intuitively associated with obesity. However, studies failed to establish such a connection. In brown adipose tissue (BAT), thyroid hormone activation via type 2 deiodinase (D2) is necessary for adaptive thermogenesis, such that mice lacking D2 (D2KO) exhibit an impaired thermogenic response to cold. Here we investigate whether the impaired thermogenesis of D2KO mice increases their susceptibility to obesity when placed on a high-fat diet.

          RESEARCH DESIGN AND METHODS

          To test this, D2KO mice were admitted to a comprehensive monitoring system acclimatized to room temperature (22°C) or thermoneutrality (30°C) and kept either on chow or high-fat diet for 60 days.

          RESULTS

          At 22°C, D2KO mice preferentially oxidize fat, have a similar sensitivity to diet-induced obesity, and are supertolerant to glucose. However, when thermal stress is eliminated at thermoneutrality (30°C), an opposite phenotype is encountered, one that includes obesity, glucose intolerance, and exacerbated hepatic steatosis. We suggest that a compensatory increase in BAT sympathetic activation of the D2KO mice masks metabolic repercussions that they would otherwise exhibit.

          CONCLUSIONS

          Thus, upon minimization of thermal stress, high-fat feeding reveals the defective capacity of D2KO mice for diet-induced thermogenesis, provoking a paradigm shift in the understanding of the role of the thyroid hormone in metabolism.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          A role for brown adipose tissue in diet-induced thermogenesis.

          Measurement of energy balance during voluntary overeating in rats unequivocally establishes the quantitative importance of diet-induced thermogenesis in energy balance. Like cold-induced thermogenesis, this form of heat production involves changes in the activity of the sympathetic nervous system and brown adipose tissue which suggest that this tissue may determine metabolic efficiency and resistance to obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thermogenic mechanisms and their hormonal regulation.

            J. Silva (2006)
            Increased heat generation from biological processes is inherent to homeothermy. Homeothermic species produce more heat from sustaining a more active metabolism as well as from reducing fuel efficiency. This article reviews the mechanisms used by homeothermic species to generate more heat and their regulation largely by thyroid hormone (TH) and the sympathetic nervous system (SNS). Thermogenic mechanisms antecede homeothermy, but in homeothermic species they are activated and regulated. Some of these mechanisms increase ATP utilization (same amount of heat per ATP), whereas others increase the heat resulting from aerobic ATP synthesis (more heat per ATP). Among the former, ATP utilization in the maintenance of ionic gradient through membranes seems quantitatively more important, particularly in birds. Regulated reduction of the proton-motive force to produce heat, originally believed specific to brown adipose tissue, is indeed an ancient thermogenic mechanism. A regulated proton leak has been described in the mitochondria of several tissues, but its precise mechanism remains undefined. This leak is more active in homeothermic species and is regulated by TH, explaining a significant fraction of its thermogenic effect. Homeothermic species generate additional heat, in a facultative manner, when obligatory thermogenesis and heat-saving mechanisms become limiting. Facultative thermogenesis is activated by the SNS but is modulated by TH. The type II iodothyronine deiodinase plays a critical role in modulating the amount of the active TH, T(3), in BAT, thereby modulating the responses to SNS. Other hormones affect thermogenesis in an indirect or permissive manner, providing fuel and modulating thermogenesis depending on food availability, but they do not seem to have a primary role in temperature homeostasis. Thermogenesis has a very high energy cost. Cold adaptation and food availability may have been conflicting selection pressures accounting for the variability of thermogenesis in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brown fat and the myth of diet-induced thermogenesis.

              The notion that brown adipose tissue (BAT) in mice or humans maintains energy balance by burning off excess calories seems incompatible with evolutionary biology. Studies in obese rats and mice lacking UCP1 indicate that diet-induced thermogenesis by BAT is unlikely. 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                April 2011
                22 March 2011
                : 60
                : 4
                : 1082-1089
                Affiliations
                [1] 1Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
                [2] 2Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts
                [3] 3Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
                Author notes
                Corresponding author: Antonio C. Bianco, abianco@ 123456deiodinase.org .

                M.C. and J.A.H. contributed equally to this work.

                Article
                0758
                10.2337/db10-0758
                3064082
                21335378
                ac5ab5b5-a085-4bf2-9994-1c1a4dcf58a7
                © 2011 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 28 May 2010
                : 09 January 2011
                Categories
                Metabolism

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article