5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isolation of Efficient Xylooligosaccharides-Fermenting Probiotic Lactic Acid Bacteria from Ethnic Pickled Bamboo Shoot Products

      , , , ,
      Biology
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Xylooligosaccharides (XOSs) are produced from xylan, which is a component of the hemicellulose that can be found in bamboo shoots. Naw Mai Dong, an ethnic pickled bamboo shoot product of northern Thailand, is generally characterized as acidic and has a sour taste. It can be considered a potential source of probiotic lactic acid bacteria (LAB). This study aimed to isolate efficient XOSs-fermenting probiotic LAB from ethnic pickled bamboo shoot products. A total of 51 XOSs-fermenting LAB were recovered from 24 samples of Naw Mai Dong, while 17 strains exhibited luxuriant growth in xylose and XOSs. Among these, seven strains belonging to Levicaseibacillus brevis and Pediococcus acidilactici exhibited similar growth in glucose, xylose, and XOSs, while the rest showed a weaker degree of growth in xylose and XOSs than glucose. Sixteen strains exhibited resistance under gastrointestinal tract conditions and displayed antimicrobial activity against foodborne pathogens. Notably, Lv. brevis FS2.1 possessed the greatest probiotic properties, with the highest %hydrophobicity index and %auto-aggregation. Effective degradation and utilization of XOSs by probiotic strains are dependent upon xylanase and β-xylosidase production, as well as xylose metabolism. It can be concluded that pickled bamboo shoot products can be a beneficial source of XOSs-fermenting probiotic LAB.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MEGA11: Molecular Evolutionary Genetics Analysis Version 11

          The Molecular Evolutionary Genetics Analysis (MEGA) software has matured to contain a large collection of methods and tools of computational molecular evolution. Here, we describe new additions that make MEGA a more comprehensive tool for building timetrees of species, pathogens, and gene families using rapid relaxed-clock methods. Methods for estimating divergence times and confidence intervals are implemented to use probability densities for calibration constraints for node-dating and sequence sampling dates for tip-dating analyses. They are supported by new options for tagging sequences with spatiotemporal sampling information, an expanded interactive Node Calibrations Editor , and an extended Tree Explorer to display timetrees. Also added is a Bayesian method for estimating neutral evolutionary probabilities of alleles in a species using multispecies sequence alignments and a machine learning method to test for the autocorrelation of evolutionary rates in phylogenies. The computer memory requirements for the maximum likelihood analysis are reduced significantly through reprogramming, and the graphical user interface has been made more responsive and interactive for very big data sets. These enhancements will improve the user experience, quality of results, and the pace of biological discovery. Natively compiled graphical user interface and command-line versions of MEGA11 are available for Microsoft Windows, Linux, and macOS from www.megasoftware.net .
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A colorimetric method for the determination of sugars.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety assessment of probiotics for human use.

              The safety of probiotics is tied to their intended use, which includes consideration of potential vulnerability of the consumer or patient, dose and duration of consumption, and both the manner and frequency of administration. Unique to probiotics is that they are alive when administered, and unlike other food or drug ingredients, possess the potential for infectivity or in situ toxin production. Since numerous types of microbes are used as probiotics, safety is also intricately tied to the nature of the specific microbe being used. The presence of transferable antibiotic resistance genes, which comprises a theoretical risk of transfer to a less innocuous member of the gut microbial community, must also be considered. Genetic stability of the probiotic over time, deleterious metabolic activities, and the potential for pathogenicity or toxicogenicity must be assessed depending on the characteristics of the genus and species of the microbe being used. Immunological effects must be considered, especially in certain vulnerable populations, including infants with undeveloped immune function. A few reports about negative probiotic effects have surfaced, the significance of which would be better understood with more complete understanding of the mechanisms of probiotic interaction with the host and colonizing microbes. Use of readily available and low cost genomic sequencing technologies to assure the absence of genes of concern is advisable for candidate probiotic strains. The field of probiotic safety is characterized by the scarcity of studies specifically designed to assess safety contrasted with the long history of safe use of many of these microbes in foods.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BBSIBX
                Biology
                Biology
                MDPI AG
                2079-7737
                May 2022
                April 21 2022
                : 11
                : 5
                : 638
                Article
                10.3390/biology11050638
                9137845
                35625366
                ac6383d3-2efd-4f91-aa0a-c03908b28efc
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article