92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella

      research-article
      1 , 2 , 3 , 4 ,
      BMC Genomics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The larvae of the greater wax moth Galleria mellonella are increasingly used (i) as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii) as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii) as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in Galleria, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing.

          Results

          We performed a Galleria transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar ( E ≤ e -03) to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis.

          Conclusion

          Here, we have developed extensive transcriptomic resources for Galleria. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our knowledge about immune and stress-inducible genes in Galleria and providing the complete sequences of genes whose primary structure have only partially been characterized using proteomic methods. The generated data provide for the first time access to the genetic architecture of immunity in this model host, allowing us to elucidate the molecular mechanisms underlying pathogen and parasite response and detailed analyses of both its immune responses against human pathogens, and its coevolution with entomopathogens.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of supergene families associated with insecticide resistance.

          The emergence of insecticide resistance in the mosquito poses a serious threat to the efficacy of many malaria control programs. We have searched the Anopheles gambiae genome for members of the three major enzyme families- the carboxylesterases, glutathione transferases, and cytochrome P450s-that are primarily responsible for metabolic resistance to insecticides. A comparative genomic analysis with Drosophila melanogaster reveals that a considerable expansion of these supergene families has occurred in the mosquito. Low gene orthology and little chromosomal synteny paradoxically contrast the easily identified orthologous groups of genes presumably seeded by common ancestors. In A. gambiae, the independent expansion of paralogous genes is mainly a consequence of the formation of clusters among locally duplicated genes. These expansions may reflect the functional diversification of supergene families consistent with major differences in the life history and ecology of these organisms. These data provide a basis for identifying the resistance-associated enzymes within these families. This will enable the resistance status of mosquitoes, flies, and possibly other holometabolous insects to be monitored. The analyses also provide the means for identifying previously unknown molecules involved in fundamental biological processes such as development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects.

            Strain PA14, a human clinical isolate of Pseudomonas aeruginosa, is pathogenic in mice and insects (Galleria mellonella). Analysis of 32 different PA14 mutants in these two hosts showed a novel positive correlation in the virulence patterns. Thus, G. mellonella is a good model system for identifying mammalian virulence factors of P. aeruginosa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis.

              Evaluation of Cryptococcus neoformans virulence in a number of nonmammalian hosts suggests that C. neoformans is a nonspecific pathogen. We used the killing of Galleria mellonella (the greater wax moth) caterpillar by C. neoformans to develop an invertebrate host model system that can be used to study cryptococcal virulence, host immune responses to infection, and the effects of antifungal compounds. All varieties of C. neoformans killed G. mellonella. After injection into the insect hemocoel, C. neoformans proliferated and, despite successful phagocytosis by host hemocytes, killed caterpillars both at 37 degrees C and 30 degrees C. The rate and extent of killing depended on the cryptococcal strain and the number of fungal cells injected. The sequenced C. neoformans clinical strain H99 was the most virulent of the strains tested and killed caterpillars with inocula as low as 20 CFU/caterpillar. Several C. neoformans genes previously shown to be involved in mammalian virulence (CAP59, GPA1, RAS1, and PKA1) also played a role in G. mellonella killing. Combination antifungal therapy (amphotericin B plus flucytosine) administered before or after inoculation was more effective than monotherapy in prolonging survival and in decreasing the tissue burden of cryptococci in the hemocoel. The G. mellonella-C. neoformans pathogenicity model may be a substitute for mammalian models of infection with C. neoformans and may facilitate the in vivo study of fungal virulence and efficacy of antifungal therapies.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2011
                11 June 2011
                : 12
                : 308
                Affiliations
                [1 ]Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
                [2 ]INRES-Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Germany
                [3 ]Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB Müggelseedamm 310, D-12587 Berlin, Germany
                [4 ]Institute of Phytopathology and Applied Zoology, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
                Article
                1471-2164-12-308
                10.1186/1471-2164-12-308
                3224240
                21663692
                ac6763aa-28f4-4208-aa10-bb90811b5715
                Copyright ©2011 Vogel et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 February 2011
                : 11 June 2011
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article