95
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Origin of an Alternative Genetic Code in the Extremely Small and GC–Rich Genome of a Bacterial Symbiont

      research-article
      1 , 2 , * , 2 , 2
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genetic code relates nucleotide sequence to amino acid sequence and is shared across all organisms, with the rare exceptions of lineages in which one or a few codons have acquired novel assignments. Recoding of UGA from stop to tryptophan has evolved independently in certain reduced bacterial genomes, including those of the mycoplasmas and some mitochondria. Small genomes typically exhibit low guanine plus cytosine (GC) content, and this bias in base composition has been proposed to drive UGA Stop to Tryptophan (Stop→Trp) recoding. Using a combination of genome sequencing and high-throughput proteomics, we show that an α-Proteobacterial symbiont of cicadas has the unprecedented combination of an extremely small genome (144 kb), a GC–biased base composition (58.4%), and a coding reassignment of UGA Stop→Trp. Although it is not clear why this tiny genome lacks the low GC content typical of other small bacterial genomes, these observations support a role of genome reduction rather than base composition as a driver of codon reassignment.

          Author Summary

          The genetic code, which relates DNA sequence to protein sequence, is nearly universal across all life. Examples of recodings do exist, but new instances are rare. Genomes that exhibit recodings typically have other extreme properties, including reduced size, reduced gene sets, and low guanine plus cytosine (GC) content. The most common recoding event, the reassignment of UGA to Tryptophan instead of Stop (Stop→Trp), was previously known from several mitochondrial and one bacterial lineage, and it was proposed to be driven by extinction of the UGA codon due to reduction in GC content. Here we present an unusual bacterial genome from a symbiont of cicadas. It exhibits the UGA Stop→Trp reassignment, but has a high GC content, showing that reduction in GC content is not a necessary condition for this recoding. This symbiont genome is also the smallest known for any cellular organism. We therefore propose gene loss during genome reduction as the common force driving this code change in bacteria and organelles. Additionally, the extremely small size of the genome further obscures the once-clear distinction between organelle and autonomous bacterial life.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Fast algorithms for large-scale genome alignment and comparison.

          We describe a suffix-tree algorithm that can align the entire genome sequences of eukaryotic and prokaryotic organisms with minimal use of computer time and memory. The new system, MUMmer 2, runs three times faster while using one-third as much memory as the original MUMmer system. It has been used successfully to align the entire human and mouse genomes to each other, and to align numerous smaller eukaryotic and prokaryotic genomes. A new module permits the alignment of multiple DNA sequence fragments, which has proven valuable in the comparison of incomplete genome sequences. We also describe a method to align more distantly related genomes by detecting protein sequence homology. This extension to MUMmer aligns two genomes after translating the sequence in all six reading frames, extracts all matching protein sequences and then clusters together matches. This method has been applied to both incomplete and complete genome sequences in order to detect regions of conserved synteny, in which multiple proteins from one organism are found in the same order and orientation in another. The system code is being made freely available by the authors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular biology and pathogenicity of mycoplasmas.

            The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors' chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct analysis of protein complexes using mass spectrometry.

              We describe a rapid, sensitive process for comprehensively identifying proteins in macromolecular complexes that uses multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) to separate and fragment peptides. The SEQUEST algorithm, relying upon translated genomic sequences, infers amino acid sequences from the fragment ions. The method was applied to the Saccharomyces cerevisiae ribosome leading to the identification of a novel protein component of the yeast and human 40S subunit. By offering the ability to identify >100 proteins in a single run, this process enables components in even the largest macromolecular complexes to be analyzed comprehensively.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2009
                July 2009
                17 July 2009
                : 5
                : 7
                : e1000565
                Affiliations
                [1 ]Center for Insect Science, University of Arizona, Tucson, Arizona, United States of America
                [2 ]Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
                Université Paris Descartes, INSERM U571, France
                Author notes

                Conceived and designed the experiments: JPM NAM. Performed the experiments: JPM BRM. Analyzed the data: JPM NAM. Wrote the paper: JPM NAM.

                Article
                09-PLGE-RA-0568R2
                10.1371/journal.pgen.1000565
                2704378
                19609354
                ac725bef-9aa2-4211-a077-2d1012af3854
                McCutcheon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 April 2009
                : 17 June 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Evolutionary Biology/Microbial Evolution and Genomics
                Genetics and Genomics/Microbial Evolution and Genomics
                Microbiology/Microbial Evolution and Genomics

                Genetics
                Genetics

                Comments

                Comment on this article