48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial synthesis of chalcogenide semiconductor nanoparticles: a review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment‐friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco‐friendly and cost‐effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen‐based semiconductor quantum particles using the inherent microbial machinery.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Semiconductor nanocrystals as fluorescent biological labels.

          Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantum dot bioconjugates for ultrasensitive nonisotopic detection.

            W Chan, S Nie (1998)
            Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shape control of CdSe nanocrystals

              Peng, Manna, Yang (2000)
              Nanometre-size inorganic dots, tubes and wires exhibit a wide range of electrical and optical properties that depend sensitively on both size and shape, and are of both fundamental and technological interest. In contrast to the syntheses of zero-dimensional systems, existing preparations of one-dimensional systems often yield networks of tubes or rods which are difficult to separate. And, in the case of optically active II-VI and III-V semiconductors, the resulting rod diameters are too large to exhibit quantum confinement effects. Thus, except for some metal nanocrystals, there are no methods of preparation that yield soluble and monodisperse particles that are quantum-confined in two of their dimensions. For semiconductors, a benchmark preparation is the growth of nearly spherical II-VI and III-V nanocrystals by injection of precursor molecules into a hot surfactant. Here we demonstrate that control of the growth kinetics of the II-VI semiconductor cadmium selenide can be used to vary the shapes of the resulting particles from a nearly spherical morphology to a rod-like one, with aspect ratios as large as ten to one. This method should be useful, not only for testing theories of quantum confinement, but also for obtaining particles with spectroscopic properties that could prove advantageous in biological labelling experiments and as chromophores in light-emitting diodes.
                Bookmark

                Author and article information

                Journal
                Microb Biotechnol
                Microb Biotechnol
                10.1111/(ISSN)1751-7915
                MBT2
                Microbial Biotechnology
                John Wiley and Sons Inc. (Hoboken )
                1751-7915
                25 June 2015
                January 2016
                : 9
                : 1 ( doiID: 10.1111/mbt2.2016.9.issue-1 )
                : 11-21
                Affiliations
                [ 1 ] Department of Chemical EngineeringNational Institute of Technology Karnataka, Surathkal Mangalore Karnataka 575 025India
                [ 2 ]UNESCO‐IHE Institute for Water Education DelftNetherlands
                Author notes
                [*] [* ]For correspondence. E‐mail rajmohanbala@ 123456gmail.com ; Tel. 9739939986; Fax +9182474033.
                Article
                MBT212297
                10.1111/1751-7915.12297
                4720408
                26110980
                ac7a693d-8d1a-49d0-b39d-a5dfe8d1914b
                © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 January 2015
                : 04 May 2015
                : 09 May 2015
                Page count
                Pages: 11
                Categories
                Minireview
                Minireviews
                Custom metadata
                2.0
                mbt212297
                January 2016
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.7.2 mode:remove_FC converted:06.01.2016

                Biotechnology
                Biotechnology

                Comments

                Comment on this article