5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protocol of a randomised controlled trial in cardiac surgical patients with endothelial dysfunction aimed to prevent postoperative acute kidney injury by administering nitric oxide gas

      protocol

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Postoperative acute kidney injury (AKI) is a common complication in cardiac surgery. Levels of intravascular haemolysis are strongly associated with postoperative AKI and with prolonged (>90 min) use of cardiopulmonary bypass (CPB). Ferrous plasma haemoglobin released into the circulation acts as a scavenger of nitric oxide (NO) produced by endothelial cells. Consequently, the vascular bioavailability of NO is reduced, leading to vasoconstriction and impaired renal function. In patients with cardiovascular risk factors, the endothelium is dysfunctional and cannot replenish the NO deficit. A previous clinical study in young cardiac surgical patients with rheumatic fever, without evidence of endothelial dysfunction, showed that supplementation of NO gas decreases AKI by converting ferrous plasma haemoglobin to ferric methaemoglobin, thus preserving vascular NO. In this current trial, we hypothesised that 24 hours administration of NO gas will reduce AKI following CPB in patients with endothelial dysfunction.

          Methods

          This is a single-centre, randomised (1:1) controlled, parallel-arm superiority trial that includes patients with endothelial dysfunction, stable kidney function and who are undergoing cardiac surgery procedures with an expected CPB duration >90 min. After randomisation, 80 parts per million (ppm) NO (intervention group) or 80 ppm nitrogen (N 2, control group) are added to the gas mixture. Test gases (N 2 or NO) are delivered during CPB and for 24 hours after surgery. The primary study outcome is the occurrence of AKI among study groups. Key secondary outcomes include AKI severity, occurrence of renal replacement therapy, major adverse kidney events at 6 weeks after surgery and mortality. We are recruiting 250 patients, allowing detection of a 35% AKI relative risk reduction, assuming a two-sided error of 0.05.

          Ethics and dissemination

          The Partners Human Research Committee approved this trial. Recruitment began in February 2017. Dissemination plans include presentations at scientific conferences, scientific publications and advertising flyers and posters at Massachusetts General Hospital.

          Trial registration number

          NCT02836899.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found

          KDIGO Clinical Practice Guidelines for Acute Kidney Injury

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension.

            Endothelium regulates vascular tone by influencing the contractile activity of vascular smooth muscle. This regulatory effect of the endothelium on blood vessels has been shown to be impaired in atherosclerotic arteries in humans and animals and in animal models of hypertension. To determine whether patients with essential hypertension have an endothelium-dependent abnormality in vascular relaxation, we studied the response of the forearm vasculature to acetylcholine (an endothelium-dependent vasodilator) and sodium nitroprusside (a direct dilator of smooth muscle) in 18 hypertensive patients (mean age [+/- SD], 50.7 +/- 10 years; 10 men and 8 women) two weeks after the withdrawal of antihypertensive medications and in 18 normal controls (mean age, 49.9 +/- 9; 9 men and 9 women). The drugs were infused at increasing concentrations into the brachial artery, and the response in forearm blood flow was measured by strain-gauge plethysmography. The basal forearm blood flow was similar in the patients and controls (mean +/- SD, 3.4 +/- 1.3 and 3.7 +/- 0.8 ml per minute per 100 ml of forearm tissue, respectively; P not significant). The responses of blood flow and vascular resistance to acetylcholine were significantly reduced in the hypertensive patients (P less than 0.0001); maximal forearm flow was 9.1 +/- 5 ml per minute per 100 ml in the patients and 20.0 +/- 8 ml per minute per 100 ml in the controls (P less than 0.0002). However, there were no significant differences between groups in the responses of blood flow and vascular resistance to sodium nitroprusside. Because the vasodilator effect of acetylcholine might also be due to presynaptic inhibition of the release of norepinephrine by adrenergic nerve terminals, the effect of acetylcholine was assessed during phentolamine-induced alpha-adrenergic blockade. Under these conditions, it was also evident that the responses to acetylcholine were significantly blunted in the hypertensive patients (P less than 0.03). Endothelium-mediated vasodilation is impaired in patients with essential hypertension. This defect may play an important part in the functional abnormalities of resistance vessels that are observed in hypertensive patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries.

              Acetylcholine is believed to dilate normal blood vessels by promoting the release of a vasorelaxant substance from the endothelium (endothelium-derived relaxing factor). By contrast, if the endothelium is removed experimentally, acetylcholine constricts blood vessels. We tested the hypothesis that muscarinic cholinergic vasodilation is impaired in coronary atherosclerosis. Graded concentrations of acetylcholine and, for comparison, the nonendothelial-dependent vasodilator nitroglycerin were infused into the left anterior descending artery of eight patients with advanced coronary stenoses (greater than 50 percent narrowing), four subjects with angiographically normal coronary arteries, and six patients with mild coronary atherosclerosis (less than 20 percent narrowing). Vascular responses were evaluated by quantitative angiography. In several segments each of four normal coronary arteries, acetylcholine caused a dose-dependent dilation from a control diameter of 1.94 +/- 0.16 mm to 2.16 +/- 0.15 mm with the maximal acetylcholine dose (P less than 0.01). In contrast, all eight of the arteries with advanced stenoses showed dose-dependent constriction, from 1.05 +/- 0.05 to 0.32 +/- 0.16 mm at the highest concentration of acetylcholine (P less than 0.01), with temporary occlusion in five. Five of six vessels with minimal disease also constricted in response to acetylcholine. All vessels dilated in response to nitroglycerin, however. We conclude that paradoxical vasoconstriction induced by acetylcholine occurs early as well as late in the course of coronary atherosclerosis. Our preliminary findings suggest that the abnormal vascular response to acetylcholine may represent a defect in endothelial vasodilator function, and may be important in the pathogenesis of coronary vasospasm.
                Bookmark

                Author and article information

                Journal
                BMJ Open
                BMJ Open
                bmjopen
                bmjopen
                BMJ Open
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2044-6055
                2019
                4 July 2019
                : 9
                : 7
                : e026848
                Affiliations
                [1 ] departmentDepartment of Anesthesia, Critical Care and Pain Medicine , Massachusetts General Hospital , Boston, Massachusetts, USA
                [2 ] departmentDepartment of Medicine, Cardiology Division , Massachusetts General Hospital , Boston, Massachusetts, USA
                [3 ] departmentDepartment of Medicine , Massachusetts General Hospital , Boston, Massachusetts, USA
                [4 ] departmentDepartment of Cardiac surgery , Massachusetts General Hospital , Boston, Massachusetts, USA
                [5 ] departmentDepartment of Surgery, Cardiac Surgery, Perfusion Services , Massachusetts General Hospital , Boston, Massachusetts, USA
                [6 ] departmentRespiratory Care Services , Massachusetts General Hospital , Boston, Massachusetts, USA
                [7 ] departmentRespiratory Care Services , Boston Medical Center , Boston, Massachusetts, USA
                [8 ] departmentDepartment of Respiratory Care , Massachusetts General Hospital , Boston, USA
                [9 ] departmentDepartment of Anesthesiology , Harvard University , Boston, USA
                [10 ] departmentDepartment of Medicine, Pulmonary and Critical Care Unit , Massachusetts General Hospital , Boston, Massachusetts, USA
                [11 ] departmentDepartment of Medicine, Division of Renal Medicine , Brigham and Women’s Hospital Department of Medicine , Boston, Massachusetts, USA
                Author notes
                [Correspondence to ] Dr Lorenzo Berra; lberra@ 123456mgh.harvard.edu
                Author information
                http://orcid.org/0000-0002-2377-3992
                Article
                bmjopen-2018-026848
                10.1136/bmjopen-2018-026848
                6615910
                31278097
                ac7ac24b-0e78-48a0-a5d9-baa24e5f6609
                © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 22 September 2018
                : 02 June 2019
                : 06 June 2019
                Funding
                Funded by: National Institutes of Health (National Heart, Lung, and Blood Institute);
                Categories
                Anaesthesia
                Protocol
                1506
                1682
                Custom metadata
                unlocked

                Medicine
                nitric oxide,hemolysis,acute kidney injury,cardiopulmonary bypass,endothelial dysfunction
                Medicine
                nitric oxide, hemolysis, acute kidney injury, cardiopulmonary bypass, endothelial dysfunction

                Comments

                Comment on this article