3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Analysis of quartz by FT-IR in air samples of construction dust.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The construction industry is reported to have some of the highest exposures to silica-containing dust. With the designation of crystalline silica as a group I human carcinogen by the International Agency for Research on Cancer (IARC), there exists a need for an analytical method to accurately quantify low levels of quartz. A method is described that uses FT-IR for quartz analysis of personal air samples collected from heavy and highway construction sites using 4-stage personal impactors. Sample filters were ashed and 13-mm or 5-mm pellets were prepared. Absorbance spectra were collected using FT-IR at resolution of 1 cm(-1) and 64 scans per spectrum. Two spectra were collected per sample using the appropriate background spectrum subtraction. Spectral manipulations such as Fourier self-deconvolution and derivatizations were performed to improve quantification. Peak height for quartz was measured at 798 cm(-1) for quantitative analysis. The estimated limit of detection for the 5-mm pellets was 1.3 microg. Recoveries of Min-U-Sil 5 spikes showed an average of > or = 94 percent for the two pellet types. The coefficient of variation of the 5-mm pellet was 9 percent at 6 microg quartz load, and 7 percent at 62 microg load. Interferences from clay, amorphous silica, concrete, calcite, and kaolinite were investigated, these being the more likely sources of interferences in construction environment. Spikes of mixtures of amorphous silica or kaolinite with Min-U-Sil 5 showed both contaminants introduced, on average, a positive error of < 5 microg with average recoveries of 106 percent and 111 percent, respectively. Spikes of mixtures of clay or concrete with Min-U-Sil 5 showed overall average recovery of 100 percent and 90 percent, respectively, after accounting for the presence of quartz in clay and concrete. This method can quantify low levels of quartz with reasonable accuracy in the face of common contaminants found in the construction industry.

          Related collections

          Author and article information

          Journal
          Appl Occup Environ Hyg
          Applied occupational and environmental hygiene
          Informa UK Limited
          1047-322X
          1047-322X
          Mar 2002
          : 17
          : 3
          Affiliations
          [1 ] Department of Work Environment, University of Massachusetts, Lowell, USA.
          Article
          10.1080/104732202753438252
          11871753
          ac82f1e8-c7cc-4cd2-938b-399bf067a68a
          History

          Comments

          Comment on this article