11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Circadian Clocks and Inflammation: Reciprocal Regulation and Shared Mediators

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Resetting of circadian time in peripheral tissues by glucocorticoid signaling.

          In mammals, circadian oscillators reside not only in the suprachiasmatic nucleus of the brain, which harbors the central pacemaker, but also in most peripheral tissues. Here, we show that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene expression in liver, kidney, and heart. However, dexamethasone does not affect cyclic gene expression in neurons of the suprachiasmatic nucleus. This enabled us to establish an apparent phase-shift response curve specifically for peripheral clocks in intact animals. In contrast to the central clock, circadian oscillators in peripheral tissues appear to remain responsive to phase resetting throughout the day.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extensive and divergent circadian gene expression in liver and heart.

            Many mammalian peripheral tissues have circadian clocks; endogenous oscillators that generate transcriptional rhythms thought to be important for the daily timing of physiological processes. The extent of circadian gene regulation in peripheral tissues is unclear, and to what degree circadian regulation in different tissues involves common or specialized pathways is unknown. Here we report a comparative analysis of circadian gene expression in vivo in mouse liver and heart using oligonucleotide arrays representing 12,488 genes. We find that peripheral circadian gene regulation is extensive (> or = 8-10% of the genes expressed in each tissue), that the distributions of circadian phases in the two tissues are markedly different, and that very few genes show circadian regulation in both tissues. This specificity of circadian regulation cannot be accounted for by tissue-specific gene expression. Despite this divergence, the clock-regulated genes in liver and heart participate in overlapping, extremely diverse processes. A core set of 37 genes with similar circadian regulation in both tissues includes candidates for new clock genes and output genes, and it contains genes responsive to circulating factors with circadian or diurnal rhythms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells.

              The mammalian circadian timing system is composed of a central pacemaker in the suprachiasmatic nucleus (SCN) of the brain and subsidiary oscillators in most peripheral cell types. While oscillators in SCN neurons are known to function in a self-sustained fashion, peripheral oscillators have been thought to damp rapidly when disconnected from the control exerted by the SCN. Using two reporter systems, we monitored circadian gene expression in NIH3T3 mouse fibroblasts in real time and in individual cells. In conjunction with mathematical modeling and cell co-culture experiments, these data demonstrated that in vitro cultured fibroblasts harbor self-sustained and cell-autonomous circadian clocks similar to those operative in SCN neurons. Circadian gene expression in fibroblasts continues during cell division, and our experiments unveiled unexpected interactions between the circadian clock and the cell division clock. Specifically, the circadian oscillator gates cytokinesis to defined time windows, and mitosis elicits phase shifts in circadian cycles.
                Bookmark

                Author and article information

                Journal
                Archivum Immunologiae et Therapiae Experimentalis
                Arch. Immunol. Ther. Exp.
                Springer Nature
                0004-069X
                1661-4917
                August 2014
                April 1 2014
                August 2014
                : 62
                : 4
                : 303-318
                Article
                10.1007/s00005-014-0286-x
                24687370
                ac83289e-df31-4e70-bc18-bb9774135c66
                © 2014
                History

                Comments

                Comment on this article