12
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of prepartum supplementary fat and muscle hypertrophy genotype on cold tolerance in newborn calves.

      1 , , ,
      Journal of animal science

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effects of feeding pregnant dams supplemental dietary fat during the last 55 d of gestation on cold tolerance of newborn crossbred calves with (Piedmontese cross, P, n = 15) or without (Hereford cross, H, n = 16) the muscle hypertrophy allele was determined. Primiparous F1 dams gestating F2 calves of the respective breeds were assigned randomly within breed to receive gestation diets containing either 2.2 (Low Fat; LF) or 5.1% fat (High Fat; HF). Safflower (Carthamus tinctorius L.) seeds containing 37% oil with 79% linoleic acid were the supplemental fat source in diets formulated to be isocaloric-isonitrogenous. At parturition, calves were separated from their dams, fed 38 degrees C pooled dairy cow colostrum (30 mL/kg BW), muzzled to prevent suckling, and returned to their dams in a heated (22 degrees C) room for 3.5 h. At 4 h of age (birth = 0 h), a catheter was inserted into the jugular vein. At 5 h of age, calves were placed in a 0 degrees C room for 140 min, and rectal temperatures and blood samples were obtained at 10- and 20-min intervals. Blood was assayed for cortisol and glucose. Rectal temperature was affected by diet (P<.05), time, diet x time, and breed x time (P<.01 for time and the interactions). Cortisol and glucose concentrations were not affected by diet, breed, or the diet x breed interaction, but they were affected by time, breed x time (both P<.01), and diet x time (P = .06). Calves from HF dams had higher rectal temperatures than calves from LF dams, and the HF calves maintained higher rectal temperatures throughout cold exposure. Cortisol concentrations were lower (P = .06) in calves from HF dams, and these calves had more (P = .06) glucose available for metabolic heat production than calves from LF dams. Piedmontese-cross calves maintained higher (P<.01) rectal temperatures and had higher cortisol and glucose (both P<.01) concentrations than did H-cross calves. We conclude that feeding dams supplemental fat during late gestation increased heat production in newborn calves and potentially could increase calf survival; calves with muscle hypertrophy may have a different ratio of shivering vs nonshivering thermogenesis due to differences in body composition or relationships among uncoupling proteins.

          Related collections

          Author and article information

          Journal
          J. Anim. Sci.
          Journal of animal science
          0021-8812
          0021-8812
          Aug 1999
          : 77
          : 8
          Affiliations
          [1 ] BovaGen, San Antonio, TX 78216, USA.
          Article
          10.2527/1999.7782227x
          10462003
          ac85caec-ee20-4751-a3c2-d8e558807c7d
          History

          Comments

          Comment on this article