22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Androgenic and Estrogenic Response of Green Mussel Extracts from Singapore’s Coastal Environment Using a Human Cell-Based Bioassay

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the last decade, evidence of endocrine disruption in biota exposed to environmental pollutants has raised serious concern. Human cell-based bioassays have been developed to evaluate induced androgenic and estrogenic activities of chemical compounds. However, bioassays have been sparsely applied to environmental samples. In this study we present data on sex hormone activities in the green mussel, Perna viridis, in Singapore’s coastal waters. P. viridis is a common bioindicator of marine contamination, and this study is a follow-up to an earlier investigation that reported the presence of sex hormone activities in seawater samples from Singapore’s coastal environment. Specimens were collected from eight locations around the Singapore coastline and analyzed for persistent organic pollutants (POPs) and heavy metals. Tissue extracts were then screened for activities on androgen receptors (ARs) and estrogen receptors (ER-α and ER-β) using a reporter gene bio-assay based on a HeLa human cell line. Mussel extracts alone did not exhibit AR activity, but in the presence of the reference androgenic hormone dihydrotestosterone (DHT), activities were up to 340% higher than those observed for DHT alone. Peak activities were observed in locations adjacent to industrial and shipping activities. Estrogenic activities of the mussel extract both alone and in the presence of reference hormone were positive. Correlations were statistically investigated between sex hormone activities, levels of pollutants in the mussel tissues, and various biological parameters (specimen size, sex ratio, lipid and moisture content). Significant correlations exist between AR activities, in the presence of DHT, and total concentration of POPs ( r = 0.725, p < 0.05).

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          An updated review of environmental estrogen and androgen mimics and antagonists.

          For the last 40 y, substantial evidence has surfaced on the hormone-like effects of environmental chemicals such as pesticides and industrial chemicals in wildlife and humans. The endocrine and reproductive effects of these chemicals are believed to be due to their ability to: (1) mimic the effect of endogenous hormones, (2) antagonize the effect of endogenous hormones, (3) disrupt the synthesis and metabolism of endogenous hormones, and (4) disrupt the synthesis and metabolism of hormone receptors. The discovery of hormone-like activity of these chemicals occurred long after they were released into the environment. Aviation crop dusters handling DDT were found to have reduced sperm counts, and workers at a plant producing the insecticide kepone were reported to have lost their libido, became impotent and had low sperm counts. Subsequently, experiments conducted in lab animals demonstrated unambiguously the estrogenic activity of these pesticides. Man-made compounds used in the manufacture of plastics were accidentally found to be estrogenic because they fouled experiments conducted in laboratories studying natural estrogens. For example, polystyrene tubes released nonylphenol, and polycarbonate flasks released bisphenol-A. Alkylphenols are used in the synthesis of detergents (alkylphenol polyethoxylates) and as antioxidants. These detergents are not estrogenic; however, upon degradation during sewage treatment they may release estrogenic alkylphenols. The surfactant nonoxynol is used as intravaginal spermicide and condom lubricant. When administered to lab animals it is metabolized to free nonylphenol. Bisphenol-A was found to contaminate the contents of canned foods; these tin cans are lined with lacquers such as polycarbonate. Bisphenol-A is also used in dental sealants and composites. We found that this estrogen leaches from the treated teeth into saliva; up to 950 microg of bisphenol-A were retrieved from saliva collected during the first hour after polymerization. Other xenoestrogens recently identified among chemicals used in large volumes are the plastizicers benzylbutylphthalate, dibutylphthalate, the antioxidant butylhydroxyanisole, the rubber additive p-phenylphenol and the disinfectant o-phenylphenol. These compounds act cumulatively. In fact, feminized male fish were found near sewage outlets in several rivers in the U.K.; a mixture of chemicals including alkyl phenols resulting from degradation of detergents during sewage treatment seemed to be the causal agent. Estrogen mimics are just a class of endocrine disruptors. Recent studies identified antiandrogenic activity in environmental chemicals such as vinclozolin, a fungicide, and DDE, and insecticide. Moreover, a single chemical may produce neurotoxic, estrogenic and antiandrogenic effects. It has been hypothesized that endocrine disruptors may play a role in the decrease in the quantity and quality of human semen during the last 50 y, as well as in the increased incidence of testicular cancer and cryptorchidism in males and breast cancer incidence in both females and males in the industrialized word. To explore this hypothesis it is necessary to identify putative causal agents by the systematic screening of environmental chemicals and chemicals present in human foods to assess their ability to disrupt the endocrine system. In addition, it will be necessary to develop methods to measure cumulative exposure to (a) estrogen mimics, (b) antiandrogens, and (c) other disruptors.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Microwave-assisted solvent extraction of environmental samples

            V Camel (2000)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line.

              Development of an estrogen receptor-mediated, chemical-activated luciferase reporter gene-expression (ER-CALUX) assay was attempted by stable transfection of luciferase reporter genes in a number of cell lines. Stable transfection of the chimeric Gal4 estrogen receptor and luciferase gene constructs in MCF-7 breast cancer and Hepa.1c1c7 mouse hepatoma cell lines, as well as transfection of a newly constructed luciferase reporter gene pEREtata-Luc in the ECC-1 human endometrial cell line, resulted in constitutive, non-estradiol-inducible clones. Stable transfection of pEREtata-Luc in the T47D breast cancer cell line, however, resulted in an extremely sensitive, highly responsive cell line. Following a 24-h exposure to estradiol (E2), stably transfected T47D.Luc cells demonstrated a detection limit of 0.5 pM, an EC50 of 6 pM, and a maximum induction of 100-fold relative to solvent controls. No clear reduction in responsiveness has been found over extended culture periods (50 passages). Anti-estrogens ICI 182,780, TCDD, and tamoxifen inhibited the estradiol-mediated luciferase induction. Genistein, nonylphenol, and o,p'DDT were the most potent (pseudo-)estrogens tested in this system (EC50 100, 260, and 660 nM, respectively). Determination of interactive effects of the (pseudo-)estrogens nonylphenol, o,p'DDT, chlordane, endosulfan, dieldrin, and methoxychlor revealed that, in combination with 3 pM E2, (pseudo-)estrogens were additive. Slightly more than additive effects (less than 2-fold) were found for combinations of dieldrin and endosulfan tested in the range of 3 to 6 microM. At these concentrations, the combination of endosulfan and chlordane demonstrated additive interaction. The ER-CALUX assay with T47D cells can provide a sensitive, responsive, and rapid in vitro system to detect and measure substances with potential (anti-)estrogenic activity.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institue of Environmental Health Sciences
                0091-6765
                November 2004
                15 July 2004
                : 112
                : 15
                : 1467-1471
                Affiliations
                1Department of Chemistry,
                2Tropical Marine Science Institute, and
                3Department of Obstetrics and Gynecology, National University of Singapore, Republic of Singapore
                Author notes
                Address correspondence to S. Bayen, Tropical Marine Science Institute, 14 Kent Ridge Rd., Singapore 119223. Telephone: 65-6774-9920. Fax: 65-6774-9654. E-mail: scip0153@nus.edu.sg

                We thank the research group of K. Jones (Department of Environmental Science, Lancaster University, UK) for their valuable technical support.

                This study is part of a scientific program (Marine Environment Monitoring, Impact Assessment and Enhancement in Singapore) funded by the Agency for Science, Technology and Research, Singapore.

                The authors declare they have no competing financial interests.

                Article
                ehp0112-001467
                10.1289/ehp.6990
                1247608
                15531429
                acb13927-00e7-47d4-bfe4-9d4a86b79de7
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.
                History
                : 29 January 2004
                : 14 July 2004
                Categories
                Research
                Articles

                Public health
                estrogen,persistent organic pollutants,endocrine disruption,green mussel,reporter gene bioassay,androgen,singapore,heavy metals

                Comments

                Comment on this article