3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The quantum spin Hall effect and topological insulators

      ,
      Physics Today
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum Spin Hall Effect in Graphene

          We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Experimental realization of a three-dimensional topological insulator, Bi2Te3.

            Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi2Te3 also points to promising potential for high-temperature spintronics applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Topological invariants of time-reversal-invariant band structures

                Bookmark

                Author and article information

                Journal
                Physics Today
                Physics Today
                AIP Publishing
                0031-9228
                1945-0699
                January 2010
                January 2010
                : 63
                : 1
                : 33-38
                Article
                10.1063/1.3293411
                acb410f9-ac3e-45c3-b911-b28e81643ca3
                © 2010
                History

                Comments

                Comment on this article