17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptomic Analyses Reveal Differential Gene Expression of Immune and Cell Death Pathways in the Brains of Mice Infected with West Nile Virus and Chikungunya Virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Autophagy and apoptosis dysfunction in neurodegenerative disorders.

            Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis in neurodegenerative disorders.

              Neuronal death underlies the symptoms of many human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, stroke, and amyotrophic lateral sclerosis. The identification of specific genetic and environmental factors responsible for these diseases has bolstered evidence for a shared pathway of neuronal death--apoptosis--involving oxidative stress, perturbed calcium homeostasis, mitochondrial dysfunction and activation of cysteine proteases called caspases. These death cascades are counteracted by survival signals, which suppress oxyradicals and stabilize calcium homeostasis and mitochondrial function. With the identification of mechanisms that either promote or prevent neuronal apoptosis come new approaches for preventing and treating neurodegenerative disorders.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                17 August 2017
                2017
                : 8
                : 1556
                Affiliations
                [1] 1Artemis One Health Research Foundation Delft, Netherlands
                [2] 2Department of Viroscience, Erasmus Medical Center Rotterdam, Netherlands
                [3] 3Center for Biomics, Erasmus Medical Center Rotterdam, Netherlands
                [4] 4Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Germany
                Author notes

                Edited by: Dirk Dittmer, University of North Carolina at Chapel Hill, United States

                Reviewed by: Helen Lazear, University of North Carolina at Chapel Hill, United States; Sara Louise Cosby, Queen's University Belfast, Ireland

                *Correspondence: Byron E. E. Martina b.martina@ 123456artemisonehealth.com

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.01556
                5562671
                28861067
                acb7926e-4ae4-4f3c-b085-662302c5edb1
                Copyright © 2017 Lim, van den Ham, Oduber, Martina, Zaaraoui-Boutahar, Roose, van IJcken, Osterhaus, Andeweg, Koraka and Martina.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 April 2017
                : 02 August 2017
                Page count
                Figures: 6, Tables: 4, Equations: 0, References: 88, Pages: 16, Words: 11827
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                transcriptomics,genomics,west nile virus,chikungunya virus,neuroinvasive disease,cell death mechanisms,immune response

                Comments

                Comment on this article