57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Linkage Mapping and Comparative Genomics Using Next-Generation RAD Sequencing of a Non-Model Organism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth) backcross that segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx lane (51 base paired-end reads). Taking advantage of the lack of crossing over in homologous chromosomes in female Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and compared to the genome of Bombyx mori (n = 28) using BLAST, revealing 28 homologous matches plus 3 expected fusion/breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM) was inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful system capable of rapidly generating chromosome specific data for non-model organisms.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          UniRef: comprehensive and non-redundant UniProt reference clusters.

          Redundant protein sequences in biological databases hinder sequence similarity searches and make interpretation of search results difficult. Clustering of protein sequence space based on sequence similarity helps organize all sequences into manageable datasets and reduces sampling bias and overrepresentation of sequences. The UniRef (UniProt Reference Clusters) provide clustered sets of sequences from the UniProt Knowledgebase (UniProtKB) and selected UniProt Archive records to obtain complete coverage of sequence space at several resolutions while hiding redundant sequences. Currently covering >4 million source sequences, the UniRef100 database combines identical sequences and subfragments from any source organism into a single UniRef entry. UniRef90 and UniRef50 are built by clustering UniRef100 sequences at the 90 or 50% sequence identity levels. UniRef100, UniRef90 and UniRef50 yield a database size reduction of approximately 10, 40 and 70%, respectively, from the source sequence set. The reduced redundancy increases the speed of similarity searches and improves detection of distant relationships. UniRef entries contain summary cluster and membership information, including the sequence of a representative protein, member count and common taxonomy of the cluster, the accession numbers of all the merged entries and links to rich functional annotation in UniProtKB to facilitate biological discovery. UniRef has already been applied to broad research areas ranging from genome annotation to proteomics data analysis. UniRef is updated biweekly and is available for online search and retrieval at http://www.uniprot.org, as well as for download at ftp://ftp.uniprot.org/pub/databases/uniprot/uniref. Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.

            Major phenotypic changes evolve in parallel in nature by molecular mechanisms that are largely unknown. Here, we use positional cloning methods to identify the major chromosome locus controlling armor plate patterning in wild threespine sticklebacks. Mapping, sequencing, and transgenic studies show that the Ectodysplasin (EDA) signaling pathway plays a key role in evolutionary change in natural populations and that parallel evolution of stickleback low-plated phenotypes at most freshwater locations around the world has occurred by repeated selection of Eda alleles derived from an ancestral low-plated haplotype that first appeared more than two million years ago. Members of this clade of low-plated alleles are present at low frequencies in marine fish, which suggests that standing genetic variation can provide a molecular basis for rapid, parallel evolution of dramatic phenotypic change in nature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resolving postglacial phylogeography using high-throughput sequencing.

              The distinction between model and nonmodel organisms is becoming increasingly blurred. High-throughput, second-generation sequencing approaches are being applied to organisms based on their interesting ecological, physiological, developmental, or evolutionary properties and not on the depth of genetic information available for them. Here, we illustrate this point using a low-cost, efficient technique to determine the fine-scale phylogenetic relationships among recently diverged populations in a species. This application of restriction site-associated DNA tags (RAD tags) reveals previously unresolved genetic structure and direction of evolution in the pitcher plant mosquito, Wyeomyia smithii, from a southern Appalachian Mountain refugium following recession of the Laurentide Ice Sheet at 22,000-19,000 B.P. The RAD tag method can be used to identify detailed patterns of phylogeography in any organism regardless of existing genomic data, and, more broadly, to identify incipient speciation and genome-wide variation in natural populations in general.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                26 April 2011
                : 6
                : 4
                : e19315
                Affiliations
                [1 ]Department of Zoology, University of Cambridge, Cambridge, United Kingdom
                [2 ]Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
                [3 ]Department of Entomology, Texas A&M University, College Station, Texas, United States of America
                [4 ]Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
                [5 ]Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
                [6 ]The GenePool Genomics Facility, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
                University of Umeå, Sweden
                Author notes

                Conceived and designed the experiments: SWB JWD CDJ MLB. Performed the experiments: SWB JSJ MLB. Analyzed the data: SWB JWD. Contributed reagents/materials/analysis tools: AMS DGH MLB. Wrote the paper: SWB DWJ DGH CDJ MLB. Wrote custom Perl scripts for data analysis: JWD.

                Article
                PONE-D-11-02589
                10.1371/journal.pone.0019315
                3082572
                21541297
                acd1be16-a452-4ea1-b6bf-57a8c69272c1
                Baxter et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 February 2011
                : 30 March 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Evolutionary Processes
                Adaptation
                Evolutionary Selection
                Mutation
                Population Genetics
                Genetic Polymorphism
                Mutation
                Comparative Genomics
                Evolutionary Genetics
                Genomic Evolution
                Genetics
                Population Genetics
                Genetic Polymorphism
                Mutation
                Genome-Wide Association Studies
                Genomics
                Genome Analysis Tools
                Gene Prediction
                Genetic Maps
                Genome Scans
                Linkage Maps
                Sequence Assembly Tools
                Genome Evolution
                Genome Sequencing

                Uncategorized
                Uncategorized

                Comments

                Comment on this article